Log in

Insight into the Brain: Application of the Retinal Microvasculature as a Biomarker for Cerebrovascular Diseases through Optical Coherence Tomography Angiography

  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The present article serves as a comprehensive review of the published research literature surrounding the retinal microvasculature, characterized through the optical coherence tomography angiography (OCTA) and its potential clinical value for understanding and detecting cerebrovascular diseases.

Recent Findings

Studies from the past 3 years (2020–2023) have identified a degeneration of the retinal microvasculature, commonly defined through the loss of vascular density, in ischemic stroke, dementia, carotid artery stenosis, cerebral small vessel disease, and a series of rare, potentially inherited cerebrovascular disorders. These retinal microvascular changes often correlate with structure and functional changes in the brain and sometimes occur prior to debilitating neurodegeneration.

Summary

While further investigations with longitudinal data and larger sample sizes are necessary, OCTA shows promising results for characterizing the retinal microvasculature as a potential imaging biomarker in reflecting the changes in the cerebral microvasculature for early detection, prevention, and treatment of cerebrovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wang L, Murphy O, Caldito NG, Calabresi PA, Saidha S. Emerging Applications of Optical Coherence Tomography Angiography (OCTA) in neurological research. Eye Vis (Lond). 2018;5:11. https://doi.org/10.1186/s40662-018-0104-3.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bennett TJ, Barry CJ. Ophthalmic imaging today: an ophthalmic photographer's viewpoint - a review. Clin Exp Ophthalmol. 2009;37(1):2–13. https://doi.org/10.1111/j.1442-9071.2008.01812.x.

    Article  PubMed  Google Scholar 

  3. Yannuzzi LA, Ober MD, Slakter JS, Spaide RF, Fisher YL, Flower RW, et al. Ophthalmic fundus imaging: today and beyond. Am J Ophthalmol. 2004;137(3):511–24. https://doi.org/10.1016/j.ajo.2003.12.035.

    Article  PubMed  Google Scholar 

  4. Huang Y, Zhang Q, Thorell MR, An L, Durbin MK, Laron M, et al. Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms. Ophthalmic Surg Lasers Imaging Retina. 2014;45(5):382–9. https://doi.org/10.3928/23258160-20140909-08.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Teussink MM, Breukink MB, van Grinsven MJ, Hoyng CB, Klevering BJ, Boon CJ, et al. OCT Angiography compared to fluorescein and indocyanine green angiography in chronic central serous chorioretinopathy. Invest Ophthalmol Vis Sci. 2015;56(9):5229–37. https://doi.org/10.1167/iovs.15-17140.

    Article  CAS  PubMed  Google Scholar 

  6. London A, Benhar I, Schwartz M. The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol. 2013;9(1):44–53. https://doi.org/10.1038/nrneurol.2012.227.

    Article  CAS  PubMed  Google Scholar 

  7. Asanad S, Mohammed I, Sadun AA, Saeedi OJ. OCTA in neurodegenerative optic neuropathies: emerging biomarkers at the eye-brain interface. Ther Adv Ophthalmol. 2020;12:2515841420950508. https://doi.org/10.1177/2515841420950508.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rocholz R, Corvi F, Weichsel J, Schmidt S, Staurenghi G. OCT angiography (OCTA) in retinal diagnostics. In: Bille JF, editor. High resolution imaging in microscopy and ophthalmology: new frontiers in biomedical optics. Cham (CH); 2019. pp. 135–60. https://doi.org/10.1007/978-3-030-16638-0_6.

  9. Munk MR, Giannakaki-Zimmermann H, Berger L, Huf W, Ebneter A, Wolf S, et al. OCT-angiography: A qualitative and quantitative comparison of 4 OCT-A devices. PLoS One. 2017;12(5):e0177059. https://doi.org/10.1371/journal.pone.0177059.

  10. Zhang Q, Lee CS, Chao J, Chen CL, Zhang T, Sharma U, et al. Wide-field optical coherence tomography based microangiography for retinal imaging. Sci Rep. 2016;6:22017. https://doi.org/10.1038/srep22017.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu B, Hu Y, Ma G, **ao Y, Zhang B, Liang Y, et al. Reduced retinal microvascular perfusion in patients with stroke detected by optical coherence tomography angiography. Front Aging Neurosci. 2021;13:628336. https://doi.org/10.3389/fnagi.2021.628336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Spaide RF, Klancnik JM Jr, Cooney MJ, Yannuzzi LA, Balaratnasingam C, Dansingani KK, et al. Volume-rendering optical coherence tomography angiography of macular telangiectasia type 2. Ophthalmology. 2015;122(11):2261–9. https://doi.org/10.1016/j.ophtha.2015.07.025.

    Article  PubMed  Google Scholar 

  13. •• Pierro L, Arrigo A, De Crescenzo M, Aragona E, Chiesa R, Castellano R, et al. Quantitative optical coherence tomography angiography detects retinal perfusion changes in carotid artery stenosis. Front Neurosci. 2021;15:640666. https://doi.org/10.3389/fnins.2021.640666.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kwapong WR, Yan Y, Hao Z, Wu B. Reduced superficial capillary density in cerebral infarction is inversely correlated with the NIHSS score. Front Aging Neurosci. 2021;13:626334. https://doi.org/10.3389/fnagi.2021.626334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. •• Incekalan TK, Taktakoglu D, Simdivar GHN, Ozturk I. Optical coherence tomography angiography findings in carotid artery stenosis. Int Ophthalmol. 2022;42(8):2501–9. https://doi.org/10.1007/s10792-022-02297-3.

    Article  PubMed  Google Scholar 

  16. Kur J, Newman EA, Chan-Ling T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res. 2012;31(5):377–406. https://doi.org/10.1016/j.preteyeres.2012.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Erskine L, Herrera E. Connecting the retina to the brain. ASN Neuro. 2014;6(6) https://doi.org/10.1177/1759091414562107.

  18. Campbell JP, Zhang M, Hwang TS, Bailey ST, Wilson DJ, Jia Y, et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep. 2017;7:42201. https://doi.org/10.1038/srep42201.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matsunaga D, Yi J, Puliafito CA, Kashani AH. OCT angiography in healthy human subjects. Ophthalmic Surg Lasers Imaging Retina. 2014;45(6):510–5. https://doi.org/10.3928/23258160-20141118-04.

    Article  PubMed  Google Scholar 

  20. Jia Y, Bailey ST, Hwang TS, McClintic SM, Gao SS, Pennesi ME, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A. 2015;112(18):E2395–402. https://doi.org/10.1073/pnas.1500185112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wei Y, Jiang H, Shi Y, Qu D, Gregori G, Zheng F, et al. Age-related alterations in the retinal microvasculature, microcirculation, and microstructure. Invest Ophthalmol Vis Sci. 2017;58(9):3804–17. https://doi.org/10.1167/iovs.17-21460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu J, Jiang C, Wang X, Zhu L, Gu R, Xu H, et al. Macular perfusion in healthy Chinese: an optical coherence tomography angiogram study. Invest Ophthalmol Vis Sci. 2015;56(5):3212–7. https://doi.org/10.1167/iovs.14-16270.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int J Stroke. 2022;17(1):18–29. https://doi.org/10.1177/17474930211065917.

    Article  PubMed  Google Scholar 

  24. Duan H, **e J, Zhou Y, Zhang H, Liu Y, Tang C, et al. Characterization of the retinal microvasculature and FAZ changes in ischemic stroke and its different types. Transl Vis Sci Technol. 2022;11(10):21. https://doi.org/10.1167/tvst.11.10.21.

    Article  PubMed  PubMed Central  Google Scholar 

  25. •• Zhang Y, Shi C, Chen Y, Wang W, Huang S, Han Z, et al. Retinal structural and microvascular alterations in different acute ischemic stroke subtypes. J Ophthalmol. 2020;2020:8850309. https://doi.org/10.1155/2020/8850309.

    Article  PubMed  PubMed Central  Google Scholar 

  26. •• Molero-Senosiain M, Vidal-Villegas B, Pascual-Prieto J, Valor-Suarez C, Saenz-Frances F, Santos-Bueso E. Correlation between retrograde trans-synaptic degeneration of ganglion cells and optical coherence tomography angiography following ischemic stroke. Cureus. 2021;13(11):e19788. https://doi.org/10.7759/cureus.19788.

    Article  PubMed  PubMed Central  Google Scholar 

  27. •• Liang Y, Liu B, **ao Y, Zeng X, Wu G, Du Z, et al. Retinal neurovascular changes in patients with ischemic stroke investigated by optical coherence tomography angiography. Front Aging Neurosci. 2022;14:834560. https://doi.org/10.3389/fnagi.2022.834560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. •• Lu K, Kwapong WR, Jiang S, Zhang X, **e J, Ye C, et al. Differences in retinal microvasculature between large artery atherosclerosis and small artery disease: an optical coherence tomography angiography study. Front Aging Neurosci. 2022;14:1053638. https://doi.org/10.3389/fnagi.2022.1053638.

    Article  PubMed  PubMed Central  Google Scholar 

  29. •• Ye C, Kwapong WR, Tao W, Lu K, Pan R, Wang A, et al. Characterization of macular structural and microvascular changes in thalamic infarction patients: a swept-source optical coherence tomography-angiography study. Brain Sci. 2022;12(5) https://doi.org/10.3390/brainsci12050518.

  30. Pachade S, Coronado I, Abdelkhaleq R, Yan J, Salazar-Marioni S, Jagolino A, et al. Detection of stroke with retinal microvascular density and self-supervised learning using OCT-A and fundus imaging. J Clin Med. 2022;11(24) https://doi.org/10.3390/jcm11247408.

  31. Shin JH. Dementia Epidemiology Fact Sheet 2022. Ann Rehabil Med. 2022;46(2):53–9. https://doi.org/10.5535/arm.22027.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang Z, Liu P, Kwapong WR, Wu B, Liu M, Zhang S. Microvascular changes in the retina correlate with MRI markers in patients with early-onset dementia. Brain Sci. 2022;12(10) https://doi.org/10.3390/brainsci12101391.

  33. Ashimatey BS, D'Orazio LM, Ma SJ, Jann K, Jiang X, Lu H, et al. Lower retinal capillary density in minimal cognitive impairment among older Latinx adults. Alzheimers Dement (Amst). 2020;12(1):e12071. https://doi.org/10.1002/dad2.12071.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wong MNK, Lai DWL, Chan HH, Lam BY. Neural and retinal characteristics in relation to working memory in older adults with mild cognitive impairment. Curr Alzheimer Res. 2021;18(3):185–95. https://doi.org/10.2174/1567205018666210608114044.

    Article  CAS  PubMed  Google Scholar 

  35. Abraham AG, Guo X, Arsiwala LT, Dong Y, Sharrett AR, Huang D, et al. Cognitive decline in older adults: what can we learn from optical coherence tomography (OCT)-based retinal vascular imaging? J Am Geriatr Soc. 2021;69(9):2524–35. https://doi.org/10.1111/jgs.17272.

    Article  PubMed  PubMed Central  Google Scholar 

  36. •• Chiara C, Gilda C, Daniela M, Antonio C, Miriana M, Marcello M, et al. A two-year longitudinal study of retinal vascular impairment in patients with amnestic mild cognitive impairment. Front Aging Neurosci. 2022;14:993621. https://doi.org/10.3389/fnagi.2022.993621.

    Article  PubMed  Google Scholar 

  37. •• Marquie M, Valero S, Martinez J, Alarcon-Martin E, Garcia-Sanchez A, de Rojas I, et al. Differences in macular vessel density in the superficial plexus across cognitive impairment: the NORFACE cohort. Sci Rep. 2022;12(1):16938. https://doi.org/10.1038/s41598-022-21558-w.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. •• Li X, Zhu S, Zhou S, Zhang Y, Ding Y, Zheng B, et al. Optical coherence tomography angiography as a noninvasive assessment of cerebral microcirculatory disorders caused by carotid artery stenosis. Dis Markers. 2021;2021:2662031. https://doi.org/10.1155/2021/2662031.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Istvan L, Czako C, Benyo F, Elo A, Mihaly Z, Sotonyi P, et al. The effect of systemic factors on retinal blood flow in patients with carotid stenosis: an optical coherence tomography angiography study. Geroscience. 2022;44(1):389–401. https://doi.org/10.1007/s11357-021-00492-1.

    Article  PubMed  Google Scholar 

  40. Kwapong WR, Liu J, Wan J, Tao W, Ye C, Wu B. Retinal thickness correlates with cerebral hemodynamic changes in patients with carotid artery stenosis. Brain Sci. 2022;12(8) https://doi.org/10.3390/brainsci12080979.

  41. •• Liu J, Wan J, Kwapong WR, Tao W, Ye C, Liu M, et al. Retinal microvasculature and cerebral hemodynamics in patients with internal carotid artery stenosis. BMC Neurol. 2022;22(1):386. https://doi.org/10.1186/s12883-022-02908-7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. •• Xu Q, Sun H, Yi Q. Association between retinal microvascular metrics using optical coherence tomography angiography and carotid artery stenosis in a Chinese cohort. Front Physiol. 2022;13:824646. https://doi.org/10.3389/fphys.2022.824646.

    Article  PubMed  PubMed Central  Google Scholar 

  43. •• Liu X, Yang B, Tian Y, Ma S, Zhong J. Quantitative assessment of retinal vessel density and thickness changes in internal carotid artery stenosis patients using optical coherence tomography angiography. Photodiagnosis Photodyn Ther. 2022;39:103006. https://doi.org/10.1016/j.pdpdt.2022.103006.

    Article  PubMed  Google Scholar 

  44. Mu R, Qin X, Guo Z, Meng Z, Liu F, Zhuang Z, et al. Prevalence and consequences of cerebral small vessel diseases: a cross-sectional study based on community people plotted against 5-year age strata. Neuropsychiatr Dis Treat. 2022;18:499–512. https://doi.org/10.2147/NDT.S352651.

    Article  PubMed  PubMed Central  Google Scholar 

  45. •• Wang X, Wei Q, Wu X, Cao S, Chen C, Zhang J, et al. The vessel density of the superficial retinal capillary plexus as a new biomarker in cerebral small vessel disease: an optical coherence tomography angiography study. Neurol Sci. 2021;42(9):3615–24. https://doi.org/10.1007/s10072-021-05038-z.

    Article  PubMed  Google Scholar 

  46. •• Fu W, Zhou X, Wang M, Li P, Hou J, Gao P, et al. Fundus changes evaluated by OCTA in patients with cerebral small vessel disease and their correlations: a cross-sectional study. Front Neurol. 2022;13:843198. https://doi.org/10.3389/fneur.2022.843198.

    Article  PubMed  PubMed Central  Google Scholar 

  47. •• Ma L, Wang M, Chen H, Qu Y, Yang L, Wang Y. Association between retinal vessel density and neuroimaging features and cognitive impairment in cerebral small vessel disease. Clin Neurol Neurosurg. 2022;221:107407. https://doi.org/10.1016/j.clineuro.2022.107407.

    Article  PubMed  Google Scholar 

  48. Wiseman SJ, Zhang JF, Gray C, Hamid C, Valdes Hernandez MDC, Ballerini L, et al. Retinal capillary microvessel morphology changes are associated with vascular damage and dysfunction in cerebral small vessel disease. J Cereb Blood Flow Metab. 2023;43(2):231–40. https://doi.org/10.1177/0271678X221135658.

    Article  CAS  PubMed  Google Scholar 

  49. Xu Z, Dong Y, Wang Y, Song L, Niu S, Wang S, et al. Associations of macular microvascular parameters with cerebral small vessel disease in rural older adults: a population-based OCT angiography study. Front Neurol. 2023;14:1133819. https://doi.org/10.3389/fneur.2023.1133819.

    Article  PubMed  PubMed Central  Google Scholar 

  50. •• Lin CW, Yang ZW, Chen CH, Cheng YW, Tang SC, Jeng JS. Reduced macular vessel density and inner retinal thickness correlate with the severity of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). PLoS One. 2022;17(5):e0268572. https://doi.org/10.1371/journal.pone.0268572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. •• Al-Nofal M, de Boer I, Agirman S, Wilms AE, Zamanipoor Najafabadi AH, Terwindt GM, et al. Optical coherence tomography angiography biomarkers of microvascular alterations in RVCL-S. Front Neurol. 2022;13:989536. https://doi.org/10.3389/fneur.2022.989536.

    Article  PubMed  PubMed Central  Google Scholar 

  52. •• Khan HM, Lo J, Sarunic MV, Gooderham PA, Yip S, Sheldon CA, et al. Quantitative optical coherence tomography angiography in patients with moyamoya vasculopathy: a pilot study. Neuroophthalmology. 2021;45(6):386–90. https://doi.org/10.1080/01658107.2021.1959619.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Locatelli M, Padovani A, Pezzini A. Pathophysiological mechanisms and potential therapeutic targets in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Front Pharmacol. 2020;11:321. https://doi.org/10.3389/fphar.2020.00321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mertens R, Graupera M, Gerhardt H, Bersano A, Tournier-Lasserve E, Mensah MA, et al. The genetic basis of moyamoya disease. Transl Stroke Res. 2022;13(1):25–45. https://doi.org/10.1007/s12975-021-00940-2.

    Article  CAS  PubMed  Google Scholar 

  55. •• Zhang X, **ao H, Liu C, Liu S, Zhao L, Wang R, et al. Optical coherence tomography angiography reveals distinct retinal structural and microvascular abnormalities in cerebrovascular disease. Front Neurosci. 2020;14:588515. https://doi.org/10.3389/fnins.2020.588515.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Current Ophthalmology Reports is grateful to Dr, Basil Williams, for their review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Goldhardt.

Ethics declarations

Conflict of Interest

Raquel Goldhardt received research support by NIH Center Core Grant P30EY014801. The remaining authors have no disclosures.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Shah, S., Llaneras, C.N. et al. Insight into the Brain: Application of the Retinal Microvasculature as a Biomarker for Cerebrovascular Diseases through Optical Coherence Tomography Angiography. Curr Ophthalmol Rep 12, 1–11 (2024). https://doi.org/10.1007/s40135-023-00320-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-023-00320-z

Keywords

Navigation