Log in

Influence of Surcharge and Foundation Soil on the Seismic Stability of Helical Soil-Nail Walls

  • Original Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

This study proposes a closed-form solution to estimate the seismic factor of safety of helical soil–nail walls subjected to uniform surcharge. Unlike the existing solutions, the proposed method considers an underlying layer of foundation soil. The backfill and the foundation soil are modelled as a viscoelastic material which enables to incorporate effect of material dam**. The study investigates how the amplification of seismic waves in both the foundation and backfill soil influences the stability of the wall. The study also explores the impact of impedance ratio on wall stability as seismic waves propagate through the interface between the foundation soil and backfill. The impact of surcharge magnitude, foundation soil properties, base excitation frequency, and the diameter and spacing of helix in soil nail on the seismic factor of safety are also discussed. It is observed that the helical soil nails provide an enhanced stability to the vertical cuts compared to the conventional soil nails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article. Also, some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

a bh, a bv :

Horizontal and vertical acceleration in the backfill layer, respectively

a fh, a fv :

Horizontal and vertical acceleration in the foundation layer, respectively

a h0, a v0 :

Horizontal and vertical acceleration at the bedrock, respectively

A j :

Bearing surface area of the circular disc Aj = π(Dhd)2/4

B :

Width of failure wedge at the backfill surface

d :

Diameter of the nail shaft

D, D f :

Dam** ratio of backfill and foundation soil, respectively

D h :

Diameter of the helix

f :

Frequency of base excitation

F D :

Total driving force

f n :

Fundamental frequency

Fo S :

Factor of safety of soil nailed wall

F R :

Total resistive force

g :

Acceleration due to gravity

H :

Height of the helical soil nailed wall

H f :

Depth of the foundation layer

k a :

Coefficient of active earth pressure

k h :

Horizontal seismic acceleration coefficient

k o :

Coefficient of earth pressure at rest

k v :

Vertical seismic acceleration coefficient

L :

Total length of soil nail

L e :

Effective length of the soil nail

N q :

Bearing capacity factor

P eq :

Total tensile force per unit horizontal spacing

\(P_{y}^{i}\) :

Pull-out capacity of ith helical soil nail

q :

Surcharge magnitude

Q h, Q v :

Total horizontal and vertical inertia forces acting on the failure wedge

Q hq, Q vq :

Horizontal and vertical seismic inertia forces due to surcharge, respectively

S hx :

Spacing between the helixes

S v :

Vertical spacing of soil nails

t :

Time

u bh, u bv :

Horizontal and vertical displacements in the backfill layer, respectively

u fh, u fh :

Horizontal and vertical displacements in the foundation layer, respectively

u ho :

Horizontal displacement at the bedrock

V s, V p :

Shear and primary wave velocities of backfill soil, respectively

V sf, V pf :

Shear and primary wave velocities of the foundation soil, respectively

W :

Weight of the failure wedge

β :

Wall slope

γ b :

Unit weight of the backfill layer

δ :

Peak interface friction angle between soil–nail interface

θ :

Angle of failure plane

λ, λ v :

Impedance ratio of shear and primary waves, respectively

ρ, ρ f :

Mass density of backfill and foundation soils, respectively

\(\sigma_{n}^{i}\) :

Overburden pressure acting on the nail-soil interface

φ :

Soil internal friction angle

ω :

Angular frequency

References

  1. Agarwal E, Pain A (2021) Probabilistic stability analysis of geosynthetic-reinforced slopes under pseudo-static and modified pseudo-dynamic conditions. Geotext Geomembr 49(6):1565–1584

    Article  Google Scholar 

  2. Agarwal E, Sharma M, Pain A (2023) Efficient surrogate model based probabilistic analysis of helical soil nailed wall under seismic conditions. Euro J Environ Civil Eng 27(3):1263–1284

    Article  Google Scholar 

  3. Annapareddy VR, Pain A, Sarkar S (2017) Seismic translational failure analysis of MSW landfills using modified pseudo-dynamic approach. Int J Geomech 17(10):04017086

    Article  Google Scholar 

  4. Bellezza I (2014) A new pseudo-dynamic approach for seismic active soil thrust. Geotech Geol Eng 32:561–576

    Article  Google Scholar 

  5. Byrne RJ, Cotton D, Porterfield J, Wolschlag C, Ueblacker G (1998) Manual for design and construction monitoring of soil nail walls (revised edition). Federal Highway Administration (FHWA) report no. FHWA-SA-96–069, Washington, DC, USA

  6. Caltabiano S, Cascone E, Maugeri M (2000) Seismic stability of retaining walls with surcharge. Soil Dyn Earthq Eng 20(5–8):469–476

    Article  Google Scholar 

  7. Choudhury D, Nimbalkar SS (2006) Pseudo-dynamic approach of seismic active earth pressure behind retaining wall. Geotech Geol Eng 24:1103–1113

    Article  Google Scholar 

  8. Hong YS, Chen RH, Wu CS, Chen JR (2005) Shaking table tests and stability analysis of steep nailed slopes. Can Geotech J 42(5):1264–1279

    Article  Google Scholar 

  9. Jaya V, Annie J (2013) An investigation on the dynamic behavior of soil nail walls. J Civil Eng Sci 2(4):241–249

    Google Scholar 

  10. Kokane AK, Sawant VA, Sahoo JP (2020) Seismic stability analysis of nailed vertical cut using modified pseudo-dynamic method. Soil Dyn Earthq Eng 137:106294

    Article  Google Scholar 

  11. Lazarte CA, Elias V, Sabatini PJ, Espinoza RD (2003) Geotechnical engineering circular No. 7-soil nail walls. Federal Highway Administration (FHWA) report no. FHWA-IF-03–017, United States.

  12. MATLAB (2022) Version R2022a. The MathWorks Inc, Natick, Massachusetts

    Google Scholar 

  13. Motta E (1994) Generalized Coulomb active-earth pressure for distanced surcharge. J Geotech Eng 120(6):1072–1079

    Article  Google Scholar 

  14. Pain A, Choudhury D, Bhattacharyya SK (2015) Seismic stability of retaining wall–soil sliding interaction using modified pseudo-dynamic method. Géotech Lett 5(1):56–61

    Article  Google Scholar 

  15. Sarangi P, Ghosh P (2016) Seismic analysis of nailed vertical excavation using pseudo-dynamic approach. Earthq Eng Eng Vib 15:621–631

    Article  Google Scholar 

  16. Sengupta A, Giri D (2011) Dynamic analysis of soil-nailed slope. In: Proceedings of the institution of civil engineers-ground improvement 164(4), 225-234. https://doi.org/10.1680/grim.8.00023

  17. Sharma M, Choudhury D, Samanta M, Sarkar S, Annapareddy VR (2020) Analysis of helical soil-nailed walls under static and seismic conditions. Can Geotech J 57(6):815–827

    Article  Google Scholar 

  18. Sharma M, Samanta M, Sarkar S (2019) Soil nailing: an effective slope stabilization technique. In: Pradhan SP, Vishal V, Singh TN (eds) Landslides: theory, practice and modelling. Springer, Cham, pp 173–199

    Chapter  Google Scholar 

  19. Sharma M, Samanta M, Sarkar S (2017) Laboratory study on pullout capacity of helical soil nail in cohesionless soil. Can Geotech J 54(10):1482–1495

    Article  Google Scholar 

  20. Singh VP, Sivakumar Babu GL (2010) 2D numerical simulations of soil nail walls. Geotech Geol Eng 28:299–309

    Article  Google Scholar 

  21. Srikar G, Mittal S (2020) Seismic analysis of retaining wall subjected to surcharge: a modified pseudodynamic approach. Int J Geomech 20(9):06020022

    Article  Google Scholar 

  22. Tokhi H, Ren G, Li J (2018) Laboratory pullout resistance of a new screw soil nail in residual soil. Can Geotech J 55(5):609–619

    Article  Google Scholar 

Download references

Funding

This work was not supported by any external funding.

Author information

Authors and Affiliations

Authors

Contributions

V. S. Ramakrishna Annapareddy: Methodology, Writing—Original draft preparation, Investigation, Software, Data curation, Validation. Mahesh Sharma: Conceptualization, Writing—review & editing, Resources, Supervision. Srikar Godas: Conceptualization, Writing—review & editing, Resources, Supervision. Ekansh Agarwal: Writing—review & editing, Investigation, Resources, Supervision.

Corresponding author

Correspondence to M. Sharma.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Coefficients to Estimate Seismic Horizontal Acceleration

$${\text{U}}_{{{\text{hbz}}}} {\text{ = cos}}\left( {{\text{y}}_{{{\text{hb1}}}} \frac{{\text{z}}}{{\text{H}}}} \right){\text{sin}}\left( {{\text{y}}_{{{\text{hb2}}}} \frac{{\text{z}}}{{\text{H}}}} \right)$$
(24)
$${\text{V}}_{{{\text{hbz}}}} {\text{ = sin}}\left( {{\text{y}}_{{{\text{hb1}}}} \frac{{\text{z}}}{H}} \right){\text{cos}}\left( {{\text{y}}_{{{\text{hb2}}}} \frac{{\text{z}}}{{\text{H}}}} \right)$$
(25)
$$U_{hfz} = A_{hzf} - C_{hzf} P\chi_{h} - D_{hzf} Q\chi_{h}$$
(26)
$$V_{hfz} = B_{hzf} + D_{hzf} P\chi_{h} - C_{hzf} Q\chi_{h}$$
(27)
$$U_{h} = A_{hf} - C_{hf} P\chi_{h} - D_{hf} Q\chi_{h}$$
(28)
$$V_{h} = B_{hf} + D_{hf} P\chi_{h} - C_{hf} Q\chi_{h}$$
(29)
$$P = 1 + D \cdot D_{f}$$
(30)
$$Q = D_{f} - D$$
(31)
$$\chi_{h} = \frac{\lambda }{{1 + D_{f} }}$$
(32)
$$\lambda = \frac{{\rho .V_{s} }}{{\rho_{f} .V_{sf} }}$$
(33)
$$\begin{aligned} {\text{A}}_{{{\text{hfz}}}}&= {\text{ cos}}\left( {{\text{y}}_{{{\text{hb1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{hb2}}}} } \right){\text{cos}}\left( {{\text{y}}_{{{\text{hf1}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right){\text{cosh}}\left( {{\text{y}}_{{{\text{hf2}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right) \hfill \\ &\quad-{\text{sin}}\left( {{\text{y}}_{{{\text{hb1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{hb2}}}} } \right){\text{sin}}\left( {{\text{y}}_{{{\text{hf1}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right){\text{sinh}}\left( {{\text{y}}_{{{\text{hf2}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right) \hfill \\ \end{aligned}$$
(34)
$$\begin{aligned} B_{hfz} &= \cos \left( {y_{hb1} } \right)\cosh \left( {y_{hb2} } \right)\sin \left( {y_{hf1} \frac{{z_{f} }}{{H_{f} }}} \right)\sinh \left( {y_{hf2} \frac{{z_{f} }}{{H_{f} }}} \right) \hfill \\ &\quad + \sin \left( {y_{hb1} } \right)\sinh \left( {y_{hb2} } \right)\cos \left( {y_{hf1} \frac{{z_{f} }}{{H_{f} }}} \right)\cosh \left( {y_{hf2} \frac{{z_{f} }}{{H_{f} }}} \right) \hfill \\ \end{aligned}$$
(35)
$$\begin{aligned} C_{{{\text{hfz}}}}&= {\text{sin}}\left( {{\text{y}}_{{{\text{hb1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{hb2}}}} } \right)\sin \left( {{\text{y}}_{{{\text{hf1}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right){\text{cosh}}\left( {{\text{y}}_{{{\text{hf2}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right) \hfill \\ &\quad-{\text{cos}}\left( {{\text{y}}_{{{\text{hb1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{hb2}}}} } \right)\cos \left( {{\text{y}}_{{{\text{hf1}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right){\text{sinh}}\left( {{\text{y}}_{{{\text{hf2}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right) \hfill \\ \end{aligned}$$
(36)
$$\begin{aligned} D_{{{\text{hfz}}}}&= {\text{sin}}\left( {{\text{y}}_{{{\text{hb1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{hb2}}}} } \right)\cos \left( {{\text{y}}_{{{\text{hf1}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right){\text{sinh}}\left( {{\text{y}}_{{{\text{hf2}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right) \hfill \\&\quad+ {\text{cos}}\left( {{\text{y}}_{{{\text{hb1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{hb2}}}} } \right)\sin \left( {{\text{y}}_{{{\text{hf1}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right){\text{cosh}}\left( {{\text{y}}_{{{\text{hf2}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right) \hfill \\ \end{aligned}$$
(37)
$$\begin{aligned} {\text{A}}_{{{\text{hf}}}} &={\text{cos}}\left( {{\text{y}}_{{{\text{hb1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{hb2}}}} } \right){\text{cos}}\left( {{\text{y}}_{{{\text{hf1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{hf2}}}} } \right) \hfill \\ &\quad-{\text{sin}}\left( {{\text{y}}_{{{\text{hb1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{hb2}}}} } \right){\text{sin}}\left( {{\text{y}}_{{{\text{hf1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{hf2}}}} } \right) \hfill \\ \end{aligned}$$
(38)
$$\begin{aligned} B_{{{\text{hf}}}}&= {\text{cos}}\left( {{\text{y}}_{{{\text{hb1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{hb2}}}} } \right)\sin \left( {{\text{y}}_{{{\text{hf1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{hf2}}}} } \right) \hfill \\ &\quad+{\text{sin}}\left( {{\text{y}}_{{{\text{hb1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{hb2}}}} } \right)\cos \left( {{\text{y}}_{{{\text{hf1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{hf2}}}} } \right) \hfill \\ \end{aligned}$$
(39)
$$\begin{aligned} C_{{{\text{hf}}}}&= {\text{sin}}\left( {{\text{y}}_{{{\text{hb1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{hb2}}}} } \right)\sin \left( {{\text{y}}_{{{\text{hf1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{hf2}}}} } \right) \hfill \\ &\quad-{\text{cos}}\left( {{\text{y}}_{{{\text{hb1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{hb2}}}} } \right)\cos \left( {{\text{y}}_{{{\text{hf1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{hf2}}}} } \right) \hfill \\ \end{aligned}$$
(40)
$$\begin{aligned} D_{{{\text{hf}}}} &={\text{sin}}\left( {{\text{y}}_{{{\text{hb1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{hb2}}}} } \right)\cos \left( {{\text{y}}_{{{\text{hf1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{hf2}}}} } \right) \hfill \\&\quad+ {\text{cos}}\left( {{\text{y}}_{{{\text{hb1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{hb2}}}} } \right)\sin \left( {{\text{y}}_{{{\text{hf1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{hf2}}}} } \right) \hfill \\ \end{aligned}$$
(41)
$$y_{hb1} = \frac{\omega H}{{V_{s} }}\sqrt {\frac{{\sqrt {1 + 4D^{2} } + 1}}{{2\left( {1 + 4D^{2} } \right)}}}$$
(42)
$$y_{hb2} = - \frac{\omega H}{{V_{s} }}\sqrt {\frac{{\sqrt {1 + 4D^{2} } - 1}}{{2\left( {1 + 4D^{2} } \right)}}}$$
(43)
$$y_{hf1} = \frac{{\omega H_{f} }}{{V_{sf} }}\sqrt {\frac{{\sqrt {1 + 4D_{f}^{2} } + 1}}{{2\left( {1 + 4D_{f}^{2} } \right)}}}$$
(44)
$$y_{hf2} = - \frac{{\omega H_{f} }}{{V_{sf} }}\sqrt {\frac{{\sqrt {1 + 4D_{f}^{2} } - 1}}{{2\left( {1 + 4D_{f}^{2} } \right)}}}$$
(45)

Appendix B: Coefficients to Estimate Seismic Vertical Acceleration

$$U_{vbz} = \cos \left( {y_{vb1} \frac{z}{H}} \right)\sin \left( {y_{vb2} \frac{z}{H}} \right)$$
(46)
$$V_{vbz} = \sin \left( {y_{vb1} \frac{z}{H}} \right)\cos \left( {y_{vb2} \frac{z}{H}} \right)$$
(47)
$$U_{vfz} = A_{vzf} - C_{vzf} P\chi_{v} - D_{vzf} Q\chi_{v}$$
(48)
$$V_{vfz} = B_{vzf} + D_{vzf} P\chi_{v} - C_{vzf} Q\chi_{v}$$
(49)
$$U_{v} = A_{vf} - C_{vf} P\chi_{v} - D_{vf} Q\chi_{v}$$
(50)
$$V_{v} = B_{vf} + D_{vf} P\chi_{v} - C_{vf} Q\chi_{v}$$
(51)
$$\chi_{v} = \frac{{\lambda_{v} }}{{1 + D_{f} }}$$
(52)
$$\lambda_{v} = \frac{{\rho .V_{p} }}{{\rho_{f} .V_{pf} }}$$
(53)
$$\begin{aligned} {\text{A}}_{{{\text{vfz}}}}&= {\text{cos}}\left( {{\text{y}}_{{{\text{vb1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{vb2}}}} } \right){\text{cos}}\left( {{\text{y}}_{{{\text{vf1}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right){\text{cosh}}\left( {{\text{y}}_{{{\text{vf2}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right) \hfill \\&\quad- {\text{sin}}\left( {{\text{y}}_{{{\text{vb1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{vb2}}}} } \right){\text{sin}}\left( {{\text{y}}_{{{\text{vf1}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right){\text{sinh}}\left( {{\text{y}}_{{{\text{vf2}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right) \hfill \\ \end{aligned}$$
(54)
$$\begin{aligned} B_{{{\text{vfz}}}}&= {\text{cos}}\left( {{\text{y}}_{{{\text{vb1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{vb2}}}} } \right)\sin \left( {{\text{y}}_{{{\text{vf1}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right){\text{sinh}}\left( {{\text{y}}_{{{\text{vf2}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right) \hfill \\&\quad+ {\text{sin}}\left( {{\text{y}}_{{{\text{vb1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{vb2}}}} } \right)\cos \left( {{\text{y}}_{{{\text{vf1}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right){\text{cosh}}\left( {{\text{y}}_{{{\text{vf2}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right) \hfill \\ \end{aligned}$$
(55)
$$\begin{aligned} C_{{{\text{vfz}}}}& ={\text{sin}}\left( {{\text{y}}_{{{\text{vb1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{vb2}}}} } \right)\sin \left( {{\text{y}}_{{{\text{vf1}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right){\text{cosh}}\left( {{\text{y}}_{{{\text{vf2}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right) \hfill \\&\quad- {\text{cos}}\left( {{\text{y}}_{{{\text{vb1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{vb2}}}} } \right)\cos \left( {{\text{y}}_{{{\text{vf1}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right){\text{sinh}}\left( {{\text{y}}_{{{\text{vf2}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right) \hfill \\ \end{aligned}$$
(56)
$$\begin{aligned} D_{{{\text{vfz}}}}&= {\text{sin}}\left( {{\text{y}}_{{{\text{vb1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{vb2}}}} } \right)\cos \left( {{\text{y}}_{{{\text{vf1}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right){\text{sinh}}\left( {{\text{y}}_{{{\text{vf2}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right) \hfill \\&\quad+ {\text{cos}}\left( {{\text{y}}_{{{\text{vb1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{vb2}}}} } \right)\sin \left( {{\text{y}}_{{{\text{vf1}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right){\text{cosh}}\left( {{\text{y}}_{{{\text{vf2}}}} \frac{{{\text{z}}_{{\text{f}}} }}{{{\text{H}}_{{\text{f}}} }}} \right) \hfill \\ \end{aligned}$$
(57)
$$\begin{aligned} {\text{A}}_{{{\text{vf}}}}&= {\text{cos}}\left( {{\text{y}}_{{{\text{vb1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{vb2}}}} } \right){\text{cos}}\left( {{\text{y}}_{{{\text{vf1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{vf2}}}} } \right) \hfill \\ &\quad-{\text{sin}}\left( {{\text{y}}_{{{\text{vb1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{vb2}}}} } \right){\text{sin}}\left( {{\text{y}}_{{{\text{vf1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{vf2}}}} } \right) \hfill \\ \end{aligned}$$
(58)
$$\begin{aligned} B_{{{\text{vf}}}} &={\text{cos}}\left( {{\text{y}}_{{{\text{vb1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{vb2}}}} } \right)\sin \left( {{\text{y}}_{{{\text{vf1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{vf2}}}} } \right) \hfill \\ &\quad+{\text{sin}}\left( {{\text{y}}_{{{\text{vb1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{vb2}}}} } \right)\cos \left( {{\text{y}}_{{{\text{vf1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{vf2}}}} } \right) \hfill \\ \end{aligned}$$
(59)
$$\begin{aligned} C_{{{\text{vf}}}} &={\text{sin}}\left( {{\text{y}}_{{{\text{vb1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{vb2}}}} } \right)\sin \left( {{\text{y}}_{{{\text{vf1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{vf2}}}} } \right) \hfill \\ &\quad-{\text{cos}}\left( {{\text{y}}_{{{\text{vb1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{vb2}}}} } \right)\cos \left( {{\text{y}}_{{{\text{vf1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{vf2}}}} } \right) \hfill \\ \end{aligned}$$
(60)
$$\begin{aligned} D_{{{\text{vf}}}}&= {\text{sin}}\left( {{\text{y}}_{{{\text{vb1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{vb2}}}} } \right)\cos \left( {{\text{y}}_{{{\text{vf1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{vf2}}}} } \right) \hfill \\&\quad+ {\text{cos}}\left( {{\text{y}}_{{{\text{vb1}}}} } \right){\text{sinh}}\left( {{\text{y}}_{{{\text{vb2}}}} } \right)\sin \left( {{\text{y}}_{{{\text{vf1}}}} } \right){\text{cosh}}\left( {{\text{y}}_{{{\text{vf2}}}} } \right) \hfill \\ \end{aligned}$$
(61)
$$y_{vb1} = \frac{\omega H}{{V_{p} }}\sqrt {\frac{{\sqrt {1 + 4D^{2} } + 1}}{{2\left( {1 + 4D^{2} } \right)}}}$$
(62)
$$y_{vb2} = - \frac{\omega H}{{V_{p} }}\sqrt {\frac{{\sqrt {1 + 4D^{2} } - 1}}{{2\left( {1 + 4D^{2} } \right)}}}$$
(63)
$$y_{vf1} = \frac{{\omega H_{f} }}{{V_{pf} }}\sqrt {\frac{{\sqrt {1 + 4D_{f}^{2} } + 1}}{{2\left( {1 + 4D_{f}^{2} } \right)}}}$$
(64)
$$y_{vf2} = - \frac{{\omega H_{f} }}{{V_{pf} }}\sqrt {\frac{{\sqrt {1 + 4D_{f}^{2} } - 1}}{{2\left( {1 + 4D_{f}^{2} } \right)}}}$$
(65)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annapareddy, V.S.R., Sharma, M., Godas, S. et al. Influence of Surcharge and Foundation Soil on the Seismic Stability of Helical Soil-Nail Walls. Indian Geotech J (2024). https://doi.org/10.1007/s40098-024-01013-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40098-024-01013-5

Keywords

Navigation