Log in

Estimation of Sand Grains Crushing Rate Under Uniaxial Compression Loading

  • Original Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Understanding and controlling of granular materials behaviour require knowledge of their characteristics and the phenomenon associated with them. Among the most complex and poorly understood phenomena for granular media is the phenomenon of grain breakage and its influence on the overall macroscopic behaviour of these media during loading, during the implementation or operation of structures. The knowledge of grain crushing mechanisms and the evolution of the granular distribution inside granular materials under loads is a unifying research topic involving several disciplines. As many lines of investigation such as physical experimentation, a wide variety of theoretical approaches and numerical simulations today allow us to address the complexity of this phenomenon. This work focuses on the study of the sand grains crushing under uniaxial compression loading. The study consists of quantifying the rate of grains crushing from the observation of the granulometric curves evolution under different values of compression stress. A coefficient that considers the rupture of the grains under uniaxial loading is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kheffache T, Melbouci B (2021) Statistical study of the crushing of limestone grains under shearing. Bull Eng Geol Environ 80(3):2323–2333. https://doi.org/10.1007/s10064-020-02083-4

    Article  Google Scholar 

  2. Zhou B, Wang J, Wang H (2014) A new probabilistic approach for predicting particle crushing in one-dimensional compression of granular soil. Soils Found 54(833):844. https://doi.org/10.1016/j.sandf.2014.06.014

    Article  Google Scholar 

  3. Tsoungui O, Vallet D, Charmet JC, Roux S (1999) Size effects in single grain fragmentation. Granul Matter 2:19–27. https://doi.org/10.1007/s100350050030

    Article  Google Scholar 

  4. Lee KL, Farhoomand I (1967) Compressibility and crushing of granular soils in anisotropic triaxial compression. Can Geotech J 4(1):68–86. https://doi.org/10.1139/t67-012

    Article  Google Scholar 

  5. Lee KL, Seed HB (1967) Drained strength characteristics of sands. J Soil Mech Found Div Proc ASCE 93(6):117–141

    Article  Google Scholar 

  6. Vesic AS, Clough GW (1968) Behaviour of granular materials under high stresses. Journal of the Soi1 Mechanics and Foundations Division Proceedings of the ASCE, 94(3):661–688.

  7. Miura N, Yamanouchi T (1978) Effect of particle crushing on the shear characteristics of a quartz rich Sand. Soil Mech Found Eng Div 9:198–202

    Google Scholar 

  8. Miura N, Hara O (1979) Particle crushing of a decomposed granite soil under shear stresses. Soils Found J 19(3):1–14

    Article  Google Scholar 

  9. Hardin B (1985) Crushing of soil particles. J Geotech Eng 111(10):1177–1192

    Article  Google Scholar 

  10. Fukumuto T (1990) A grading equation for decomposed granite soil. Soils Found 30(1):27–34

    Article  Google Scholar 

  11. Lade PV, Yamamuro JA, Bopp PA (1996) Significance of particle crushing in granular materials. J Geotech Eng ASCE 122(4):309–316

    Article  Google Scholar 

  12. Hagerty MM, Hite DR, Ullrich CR, Hagerty DJ (1993) One dimentional high pressure compression of granular media. J Geotech Eng 119(1):1–18. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(1)

    Article  Google Scholar 

  13. Datta M, Gulhati SK, Rao GV (1979) Crushing of calcareous sands during shear. In: Proceedings of the 11th annual off shore Technology Conference Houston OTC Paper No 3525, pp 1459–1467. Doi: https://doi.org/10.4043/3525-ms

  14. Marsal RJ (1967) Large scale testing of rockfill Materials. J Soil Mech J Soil Mech Found Div (ASCE) 93(2):27–43

    Article  Google Scholar 

  15. Einav I (2007) Breakage mechanics—Part I: Theory. J Mech Phys Solids 55:1274–1297. https://doi.org/10.1016/j.jmps.2006.11.003

    Article  MathSciNet  MATH  Google Scholar 

  16. Turcotte DL (1986) Fractals and fragmentation. J Geophys Res 91(B2):1921–1926. https://doi.org/10.1029/jb091ib02p01921

    Article  Google Scholar 

  17. Leikine M (1971) Etude géologique des Babors occidentaux (Algérie). Université de Paris, Mémoire

    Google Scholar 

  18. Bougdal R (2009) Doublement du tunnel de Cap Aokas, synthèse des données géologiques et géotechniques. Rapport géologique (Document interne)

  19. Milligan V (2003) Some uncertainties in embankment dam engineering. J Geotech Geoenviron 129(9):785–797. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:9(785)

    Article  Google Scholar 

  20. Arslan H, Baykal G, Sture S (2009) Analysis of the influence of crushing on the behavior of granular materials under shear. Granul Matter 11(2):87–97. https://doi.org/10.1007/s10035-009-0127-5

    Article  Google Scholar 

  21. Biarez J, Hicher PY (1997) Influence de la granulométrie et de son évolution par rupture de grains sur le comportement mécanique de matériaux granulaires. Revue Française de Génie Civil 1(4):607–631. https://doi.org/10.1080/12795119.1997.9692147

    Article  Google Scholar 

  22. McDowell GR, Bolton MD (1998) on the micromechanics of crushable aggregates. Géotechnique 48(5):667–679

    Article  Google Scholar 

  23. Nakata Y, Hyde AFL, HyodoM MH (1999) A probabilistic approach to sand particle crushing in the triaxial test. Geotechnique 49(5):567–583. https://doi.org/10.1680/geot.1999.49.5.567

    Article  Google Scholar 

  24. Wu M, Wang J (2020) A DEM investigation on crushing of sand particles containing intrinsic flaws. Soils Found 60:562–572. https://doi.org/10.1016/j.sandf.2020.03.00

    Article  Google Scholar 

  25. Dantu P (1957) Contribution à l’étude mécanique et géométrique des milieux Pulvérulents. Comptes Rendus du IV éme Congres de Mécanique des Sols et des Fondations: 144–148

  26. Liu C, Liu F, Song J, Ma F, Wang D, Zhang G (2021) On the measurements of individual particle properties via compression and crushing. J Rock Mech Geotech Eng 13:377–389. https://doi.org/10.1016/j.jrmge.2020.06.009

    Article  Google Scholar 

  27. Hanley KJ, O’Sullivan C, Huang X (2015) Particle-scale mechanics of sand crushing in compression and shearing using DEM. Soils Found 55(5):1100–1112. https://doi.org/10.1016/j.sandf.2015.09.011

    Article  Google Scholar 

  28. Jaeger JC (1967) Failure of rocks under tensile conditions. Int J Rock Mech Min Sci 4:219–227. https://doi.org/10.1016/0148-9062(67)90046

    Article  Google Scholar 

  29. Mueth DM, Jaeger HM, Nagel SR (1998) Force distribution in a granular medium. Phys Rev E 57:3164–3169. https://doi.org/10.1103/PhysRevE.57.3164

    Article  Google Scholar 

  30. Wang Z, Wong RCK, Qiao L (2011) Investigation on relations between grain crushing amount and void ratio change of granular materials in one-dimensional compression and creep tests. J Rock Mech Geotech Eng 3(Supp.):415–420. https://doi.org/10.3724/SP.J.1235.2011.00415

    Article  Google Scholar 

  31. Tejchman J, Górski J (2011) Modeling of bearing capacity of footings on sand within stochastic micro-polar hypoplasticity. Int J Numer Anal Methods Geomech 35(2):226–243. https://doi.org/10.1002/nag.928

    Article  MATH  Google Scholar 

  32. Al-Rousan T, Al-Hattamleh O, Al-Dwairi R (2011) Effect of inherent anisotropy on shear strength following crushing of natural Aqaba subgrade sand. Jordan J Civil Eng 5(3):431–445

    Google Scholar 

  33. Nakata Y, Hyodo M, Hyde AFL, Kato Y, Murata H (2001) Microscopic particle crushing of sand subjected to high pressure one-dimensional compression. Soils Found 41(1):69–82. https://doi.org/10.3208/sandf.41.69

    Article  Google Scholar 

  34. Ovalle C (2013) Contribution a l’étude de la rupture des grains dans les matériaux granulaires. Mémoire, ‘Ecole Centrale de Nantes

  35. Arya LM, Paris J (1981) A physico empirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Sci Soc Am J 45(1023):1030. https://doi.org/10.2136/sssaj1981.03615995004500060004x

    Article  Google Scholar 

  36. McDowell GR, de Bono JP (2013) On the micro mechanics of one-dimensional normal compression. Géotechnique 63(11):895–908. https://doi.org/10.1680/geot.12.P.041

    Article  Google Scholar 

  37. Pino LFM, Baudet BA (2015) The effect of the particle size distribution on the mechanics of fibre-reinforced sands under one-dimensional compression. Geotext Geomembr 43(3):250–258. https://doi.org/10.1016/j.geotexmem.2015.02.004

    Article  Google Scholar 

  38. Ma G, Chen Y, Yao F, Zhou W, Wang Q (2019) Evolution of particle size and shape towards a steady state: insights from FDEM simulations of crushable granular materials. Comput Geotech 112:147–158. https://doi.org/10.1016/j.compgeo.2019.04.022

    Article  Google Scholar 

  39. Miao G, Airey D (2013) Breakage and ultimate states for a carbonate sand. Géotechnique 63(14):1221–1229. https://doi.org/10.1680/geot.12.P.111

    Article  Google Scholar 

  40. Kim J, Zhang Y, Seol Y, Dai S (2019) Particle crushing in hydrate-bearing sands. Geomech Energy Environ. https://doi.org/10.1016/j.gete.2019.100133

    Article  Google Scholar 

  41. Einav I (2007) Fracture propagation in brittle granular matter. Proc R Soc Lond Ser A: Math, Phys Eng Sci 463(2087):3021–3035. https://doi.org/10.1098/rspa.2007.1898

    Article  Google Scholar 

  42. Chuhan FA, Kjeldstad A, Bjorlykke K, Hoeg K (2002) Porosity loss in sand by grain crushing-experimental evidence and relevance to reservoir quality. Mar Pet Geol 19:39–53

    Article  Google Scholar 

  43. Russell AR, Einav I (2013) Energy dissipation from particulate systems undergoing a single particle-crushing event. Granul Matter 15:299–314. https://doi.org/10.1007/s10035-013-0408-x

    Article  Google Scholar 

  44. Cavarretta I, Coop M, O’Sullivan C (2010) The influence of particle characteristics on the behaviour of coarse grained soils. Géotechnique 60(6):413–423. https://doi.org/10.1680/geot.2010.60.6.413

    Article  Google Scholar 

  45. Liang ZZ, **ng H, Wang SY, Williams DJ, Tang CA (2012) A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw. Comput Geotech 45:19–33. https://doi.org/10.1016/j.compgeo.2012.04.011

    Article  Google Scholar 

  46. Huang YH, Yang SQ, Ranjith PG, Zhao J (2017) Strength failure behavior and crack evolution mechanism of granite containing pre-existing non-coplanar holes: experimental study and particle flow modeling. Comput Geotech 88:182–198. https://doi.org/10.1016/j.compgeo.2017.03.015

    Article  Google Scholar 

  47. Zeng W, Yang SQ, Tian WL (2018) Experimental and numerical investigation of brittles and stone specimens containing different shapes of holes under uniaxial compression. Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2018.08.016

    Article  Google Scholar 

  48. Huang YH, Yang SQ, Tian WL (2019) Cracking process of a granite specimen that contains multiple pre-existing holes under uniaxial compression. Fatigue Fract Eng Mater Struct 42(6):1341–1356. https://doi.org/10.1111/ffe.12990

    Article  Google Scholar 

  49. Lo KY, Roy M (1973) Response of particulate materials at high pressures. Soils Found J 13(1):61–76. https://doi.org/10.3208/sandf1972.13.61

    Article  Google Scholar 

  50. McDowell GR, Bolton MD, Robertson D (1996) The fractal crushing of granular materials. Int J Mech Phys Solids 44(12):2079–2102. https://doi.org/10.1016/S0022-5096(96)00058-0

    Article  Google Scholar 

  51. Lobo Guerrero S, Vallejo LE (2005) Crushing a weak granular material: experimental numerical analyses. Géotechnique 55(3):245–249. https://doi.org/10.1680/geot.2005.55.3.245

    Article  Google Scholar 

  52. Russell AR, Khalili N (2004) A bounding surface plasticity model for sands exhibiting particle crushing. Can Geotech J 41(6):1179–1192. https://doi.org/10.1139/t04-065

    Article  Google Scholar 

  53. Phuong NTV, Rohe A, Brinkgreve RBJ, van Tol AF (2018) Hypoplastic model for crushable sand. Soils Found 58:615–626. https://doi.org/10.1016/j.sandf.2018.02.022

    Article  Google Scholar 

  54. Todisco MC, Wang W, Coop MR, Senetakis K (2017) Multiple contact compression tests on sand particles. Soils Found 57:126–140. https://doi.org/10.1016/j.sandf.2017.01.009

    Article  Google Scholar 

  55. Mandelbrot BB, Wheeler JA (1983) The fractal geometry of nature. Am J Phys 51:286–287. https://doi.org/10.1119/1.13295

    Article  Google Scholar 

  56. Tyler SW, Wheatcraft SW (1989) Application of fractal mathematics to soil water retention estimation. Soil science society of America Journal Divisions 1 Soil Physics, 53(4):987–996. Doi: https://doi.org/10.2136/sssaj1989.03615995005300040001x.

  57. Chouicha K (2006) La dimension fractale et l’´étendue granulaire comme paramètres d’identification des mélanges granulaires. Mater Struct 39:665–681. https://doi.org/10.1617/s11527-006-9113-0

    Article  Google Scholar 

  58. Peerun MI, Ong DEL, Choo CS, Cheng WC (2020) Effect of interparticle behavior on the development of soil arching in soil-structure interaction. Tunn Undergr Space Technol 106:103610. https://doi.org/10.1016/j.tust.2020.103610

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the whole team of the soil mechanics Laboratory of Civil Engineering department University of Bejaia -Algeria.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article. No funding was received to assist with the preparation of this manuscript and for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

RS, TK and AT contributed to the conception and design of the article; RS carried out the tests, interpreted the results of the experimental tests, and analysed the data assisted by TK. RS wrote the first version of the manuscript; AT and TK guided and supervised the research work and commented on the previous version of the manuscript. All of the authors have read and accepted the published version of the manuscript.

Corresponding author

Correspondence to Rima Sedira.

Ethics declarations

Conflicts of interest

The authors received no financial support for the research, authorship, and / or publication of this article. The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedira, R., Kheffache, T. & Tahakourt, A. Estimation of Sand Grains Crushing Rate Under Uniaxial Compression Loading. Indian Geotech J (2023). https://doi.org/10.1007/s40098-023-00800-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40098-023-00800-w

Keywords

Navigation