Log in

Hydroxyapatite nanoparticles/polyimide-coated platinum electrodes for improved heat-insulating and heavy metal ion diffusion properties

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Polyimide is a promising shell polymer for platinum electrodes because of good biocompatibility, excellent corrosion resistance, mechanical, thermal and chemical stabilities. Herein, hydroxyapatite (HAP) nanoparticles were coated on polyimide encapsulated platinum electrodes to overcome the adverse effects of electrical stimulation. SEM, TEM, XRD and EDS analyses indicated that the coating was homogeneous and dense consisting of nano-hydroxyapatite. The HAP/polyimide coating presented good stability under the conditions of moist heat, high temperature or high shear stress (10 dyn/cm2). Differential thermal analysis revealed that the nano-hydroxyapatite coating could significantly reduce the thermal diffusion from electrical stimulation its thermal elimination rate was about 96 times and 310 times smaller than that of polyimide encapsulated platinum electrode and bare platinum electrode, respectively. Atomic absorption spectroscopy measurement showed that the nano-hydroxyapatite coatings could prohibit the diffusion of platinum ions caused by electrical stimulation. CCK-8 test, neutral red uptake measurement and Tunel analysis revealed that the nano-hydroxyapatite coating could significantly attenuate the cytotoxicity of heavy metal ion from long-term stimulation. The in vivo biocompatibility evaluation by H&E measurement in a rabbit subcutaneous implantation model clearly showed that the nano-hydroxyapatite coating had good tissue response in 6 months. All these data supported that the nano-hydroxyapatite coating improved the biocompatibility of platinum electrodes by prohibiting thermal injury and heavy metal ions diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Su, Y., Routhu, S., Moon, K.S., Lee, S.Q., Youm, W., Ozturk, Y.: A wireless 32-channel implantable bidirectional brain machine interface. Sensors 16(10), 1582 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Baek, C., Kim, J., Lee, Y., Seo, J.-M.: Fabrication and evaluation of cyclic olefin copolymer-based implantable neural electrode. IEEE Trans. Biomed. Eng. 67(9), 2542–2551 (2020)

    Article  PubMed  Google Scholar 

  3. Feiner, R., Dvir, T.: Tissue-electronics interfaces: from implantable devices to engineered tissues. Nat. Rev. Mater. 3, 17076 (2018)

    Article  CAS  Google Scholar 

  4. Agren, R., Bartek, J., Jr., Johansson, A., Blomstedt, P., Fytagoridis, A.: Pulse width and implantable pulse generator longevity in pallidal deep brain stimulation for dystonia: a population-based comparative effectiveness study. Stereotact. Funct. Neurosurg. 98(5), 331–336 (2020)

    Article  PubMed  Google Scholar 

  5. Suaning, G.J., Lovell, N.H., Kwok, C.Y.: Fabrication of platinum spherical electrodes in an intra-ocular prosthesis using high-energy electrical discharge. Sens. Actuat. A-Phys. 108, 155–161 (2003)

    Article  CAS  Google Scholar 

  6. Lee, Y.J., Kim, H.J., Do, S.H., Kang, J.Y., Lee, S.H.: Characterization of nerve-cuff electrode interface for biocompatible and chronic stimulating application. Sens. Actuat. B-Chem. 237, 924–934 (2016)

    Article  CAS  Google Scholar 

  7. McDonald, J.W.: Repairing the damaged spinal cord. Sci. Am. 281(3), 64–73 (1999)

    Article  CAS  PubMed  Google Scholar 

  8. Schlosshauer, B., Brinker, T., Wuller, H.W., Meyer, J.U.: Towards micro electrode implants: in vitro guidance of rat spinal cord neurites through polyimide sieves by Schwann cells. Brain Res. 903(1–2), 237–241 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. Humayun, M.S., Jr., Juan, E.D., Weiland, J.D., Dagnelie, G., Katona, S., Greenberg, R., Suzuki, S.: Pattern electrical stimulation of the human retina. Vis. Res. 39(15), 2569–2576 (1999)

    Article  CAS  PubMed  Google Scholar 

  10. He, F., Lycke, R., Ganji, M., **e, C., Luan, L.: Ultraflexible neural electrodes for long-lasting intracortical recording. iScience 23(8), 101387 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jang, J., Kim, J.Y., Kim, Y.C., Kim, S., Chou, N., Lee, S., Choung, Y.H., Kim, S., Brugger, J., Choi, H., Jang, H.J.: A 3D microscaffold cochlear electrode for steroid elution. Adv. Healthc. Mater. 8(20), e1900379 (2019)

    Article  PubMed  Google Scholar 

  12. Keiler, J., Schulze, M., Sombetzki, M., Heller, T., Tischer, T., Grabow, N., Wree, A., Bansch, D.: Neointimal fibrotic lead encapsulation-clinical challenges and demands for implantable cardiac electronic devices. J. Cardiol. 70, 7–17 (2017)

    Article  PubMed  Google Scholar 

  13. Hibbert, D.B., Weitzner, K., Tabor, B., Carter, P.: Mass changes and dissolution of platinum during electrical stimulation in artificial perilymph solution. Biomaterials 21(21), 2177–2182 (2000)

    Article  CAS  PubMed  Google Scholar 

  14. de Haro, C., Mas, R., Abadal, G., Munoz, J., Perez-Murano, F., Dominguez, C.: Electrochemical platinum coatings for improving performance of implantable microelectrode arrays. Biomaterials 23(23), 4515–4521 (2002)

    Article  PubMed  Google Scholar 

  15. Widge, A.S., Jeffries-El, M., Cui, X.Y., Lagenaur, C.F., Matsuoka, Y.: Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes. Biosens. Bioelectron. 22(8), 1723–1732 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. Mailley, S., Hyland, M., Mailley, P., McLaughlin, J.A., McAdams, E.T.: Thin film platinum cuff electrodes for neurostimulation: in vitro approach of safe neurostimulation parameters. Bioelectrochemistry 63(1–2), 359–364 (2004)

    Article  CAS  PubMed  Google Scholar 

  17. Lin, C.Y., Lou, W.S., Chen, J.C., Weng, K.Y., Shih, M.C., Hung, Y.W., Chen, Z.Y., Wang, M.C.: Biocompatibility and bio-insulation of implantable electrode prosthesis ameliorated by A-174 silane primed parylene-C deposited embedment. Micromachines 11(12), 1064 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lacour, S.P., Atta, R., FitzGerald, J.J., Blamire, M., Tarte, E., Fawcett, J.: Polyimide micro-channel arrays for peripheral nerve regenerative implants. Sens. Actuat. A-Phys. 147(2), 456–463 (2008)

    Article  CAS  Google Scholar 

  19. Fukuzawa, M., Ikedou, H., Iwamoto, M.: Electrical breakdown of ultra-thin polyimide langmuir-blodgett films under a needle-plane electrode system. Thin Solid Films 438–439, 243–247 (2003)

    Article  Google Scholar 

  20. Andreeva, D.V., Gorin, D.A., Mohwald, H., Sukhorukov, G.B.: Novel type of self-assembled polyamide and polyimide nanoengineered shells-fabrication of microcontainers with shielding properties. Langmuir 23(17), 9031–9036 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. Richardson, R.R., Jr., Miller, J.A., Reichert, W.M.: Polyimides as biomaterials: preliminary biocompatibility testing. Biomaterials 14(8), 627–635 (1993)

    Article  CAS  PubMed  Google Scholar 

  22. Lago, N., Ceballos, D., Rodriguez, F.J., Stieglitz, T., Navarro, X.: Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the pheripheral nerve. Biomaterials 26(14), 2021–2031 (2005)

    Article  CAS  PubMed  Google Scholar 

  23. Seo, J.M., Kim, S.J., Chung, H., Kim, E.T., Yu, H.G., Yu, Y.S.: Biocompatibility of polyimide microelectrode array for retinal stimulation. Mater. Sci. Eng. C 24, 185–189 (2004)

    Article  Google Scholar 

  24. Zhang, X., Tang, Y., Zhang, F., Lee, C.: A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016)

    Article  Google Scholar 

  25. Ji, B., Zhang, F., Song, X., Tang, Y.: A novel potassium-ion-based dual-ion battery. Adv. Mater. 29(19), 1700519 (2017)

    Article  Google Scholar 

  26. Mu, S., Liu, Q., Kidkhunthod, P., Zhou, X., Wang, W., Tang, Y.: Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. Natl. Sci. Rev. 8(7), nwaa178 (2021)

    CAS  PubMed  Google Scholar 

  27. Zhu, H., An, Y., Shi, M., Li, Z., Chen, N., Yang, C., **ao, P.: Porous N-doped carbon/MnO2 nanoneedles for high performance ionic liquid-based supercapacitors. Mater. Lett. 296, 129837 (2021)

    Article  CAS  Google Scholar 

  28. Liu, J., Sui, M., Song, S., Huang, L., Belfiore, L.A., Tang, J.: Towards applicable photoacoustic micro-fluidic pumps: tunable excitation wavelength and improved stability by fabrication of Ag-Au alloying nanoparticles. J. Alloy Compd. 884, 161091 (2021)

    Article  CAS  Google Scholar 

  29. Liu, W., Zheng, Y., Wang, Z., Wang, Z., Yang, J., Chen, M., Wei, L.: Ultrasensitive exhaled breath sensors based on anti-resonant hollow core fiber with in situ grown ZnO-Bi2O3 nanosheets. Adv. Mater. Interfaces 8(6), 2001978 (2021)

    Article  CAS  Google Scholar 

  30. Guo, W., Liu, J., Zhang, P., Song, L., Wang, X., Hu, Y.: Multi-functional hydroxyapatite/polyvinyl alcohol composite aerogels with self-cleaning, superior fire resistance and low thermal conductivity. Compos. Sci. Technol. 158, 128–136 (2018)

    Article  CAS  Google Scholar 

  31. Brazdis, R.I., Fierascu, I., Avramescu, S.M., Fierascu, R.C.: Recent progress in the application of hydroxyapatite for the adsorption of heavy metals. Materials 14(22), 6898 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ibrahim, M., Labaki, M., Giraudon, J.M., Lamonier, J.F.: Hydroxyapatite, a multifunctional material for air water and soil pollution control: a review. J. Hazard. Mater. 383, 121139 (2020)

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, Y.G., Zhu, Y.J., Chen, F., Sun, T.W.: Biocompatible, ultralight, strong hydroxyapatite networks based on hydroxyapatite microtubes with excellent permeability and ultralow thermal conductivity. ACS Appl. Mater. Interfaces 9(9), 7918–7928 (2017)

    Article  CAS  PubMed  Google Scholar 

  34. Quilitz, M., Steingrover, K., Veith, M.: Effect of the Ca/P ratio on the dielectric properties of nanoscaled substoichiometric hydroxyapatite. J. Mater. Sci. Mater. Med. 21, 399–405 (2010)

    Article  CAS  PubMed  Google Scholar 

  35. Xu, Y., Zhao, A., Wang, X., Xue, H., Liu, F.: Influence of curing accelerators on the imidization of polyamic acids and properties of polyimide films. J. Wuhan Univ. Technol. Mater. Sci. Ed. 31(5), 1137–1143 (2016)

    Article  CAS  Google Scholar 

  36. Hu, X., Shen, H., Cheng, Y., **ong, X., Wang, S., Fang, J., Wei, S.: One-step modification of nano-hydroxyapatite coating on titanium surface by hydrothermal method. Surf. Coat. Tech. 205, 2000–2006 (2010)

    Article  CAS  Google Scholar 

  37. Schander, A., Gancz, J.M., Tintelott, M., Lang, W.: Towards long-term stable polyimide-based flexible electrical insulation for chronically implanted neural electrodes. Micromachines 12(11), 1279 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rial, R., Gonzalez-Durruthy, M., Liu, Z., Ruso, J.M.: Advanced materials based on nanosized hydroxyapatite. Molecules 26(11), 3190 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Slack, G.A.: Platinum as a thermal conductivity standard. J. Appl. Phys. 35(2), 339–344 (1964)

    Article  CAS  Google Scholar 

  40. Yang, C., Yang, P., Wang, W., Wang, J., Zhang, M., Lin, J.: Solvothermal synthesis and characterization of Ln (Eu3+, Tb3+) doped hydroxyapatite. J. Colloid Interf. Sci. 328(1), 203–210 (2008)

    Article  CAS  Google Scholar 

  41. Hashizume, M., Maeda, M., Iijima, K.: Biomimetic calcium phosphate coating on polyimide films by utilizing surface-selective hydrolysis treatments. J. Ceram. Soc. JPN 121(1417), 816–818 (2013)

    Article  CAS  Google Scholar 

  42. Hong, G., Lieber, C.M.: Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20(6), 330–345 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gross, K.A., Berndt, C.C., Herman, H.: Amorphous phase formation in plasma-sprayed hydroxyapatite coatings. J. Biomed. Mater. Res. 39(30), 407–414 (1998)

    Article  CAS  PubMed  Google Scholar 

  44. Lu, Y.P., Song, Y.Z., Zhu, R.F., Li, M.S., Lei, T.Q.: Factors influencing phase compositions and structure of plasma sprayed hydroxyapatite coatings during heat treatment. Appl. Surf. Sci. 206(1–4), 345–354 (2003)

    Article  CAS  Google Scholar 

  45. Grill, W.M., Norman, S.E., Bellamkonda, R.V.: Implanted neural interfaces: biochallenges and engineered solutions. Annu. Rev. Biomed. Eng. 11, 1–24 (2009)

    Article  CAS  PubMed  Google Scholar 

  46. Wurth, S., Capogrosso, M., Raspopovic, S., Gandar, J., Federici, G., Kinany, N., Cutrone, A., Piersigilli, A., Pavlova, N., Guiet, R., Taverni, G., Rigosa, J., Shkorbatova, P., Navarro, X., Barraud, Q., Courtine, G., Micera, S.: Long-term usability and bio-intergration of polyimide-based intra-neural stimulating electrodes. Biomaterials 122, 114–129 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Basic Research Project of Natural Science in Henan Institute of Science and Technology (103010620002/012) and Med-Engineering Cross Foundation of Shanghai Jiao tong University (YG2019QNB28). Scientific and technological project of Henan Province (222102310005), Training Program of the National Natural Science Foundation of China in Henan Institute of Science and Technology (105020221015/034) and Training Program of Basic Research Plan in Henan Institute of Science and Technology (10502022015/056).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua-Jie Wang or Muhammad Bilal.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HJ., Yang, GG., Zhang, JM. et al. Hydroxyapatite nanoparticles/polyimide-coated platinum electrodes for improved heat-insulating and heavy metal ion diffusion properties. J Nanostruct Chem 13, 563–575 (2023). https://doi.org/10.1007/s40097-022-00489-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-022-00489-y

Keywords

Navigation