Log in

Prediction study of structural, thermal, and optical characterization of Co0.6Zn0.4Fe2O4 cubic spinel synthesized via sol–gel method for energy storage

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this comprehensive study, we synthesized Co0.6Zn0.4Fe2O4 cubic spinel via the sol–gel method and characterized its structural, thermal, and optical properties. X-ray diffraction (XRD) verified the crystallization within the cubic Fd-3 m space group, and a detailed analysis determined a crystallite size ranging from 47 to 58 nm. Notably, the calculated crystallite size of 49.4 nm revealed inherent limitations in Scherer’s formula, which does not account for intrinsic strain effects from crystal defects, grain boundaries, and stacking. Optical investigations, utilizing UV–Vis absorption spectroscopy, unveiled a direct optical band gap of 1.26 eV, suggesting semiconductor behavior. The material’s thermal conductivity was found to be highly temperature sensitive, reaching its maximum value for both spin orientations at 900 K, with a quantified value of ke/τ = 4 × 1014 W/(mKs). This thermal behavior, along with the observed disorder (Eu value of 1.41 eV) and higher Urbach energy, offers valuable insights into the material’s response under varying temperature conditions, essential for applications in diverse technological domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  1. S. Hazra, N. Ghosh, Preparation of nano ferrites and their applications. J. Nanosci. Nanotechnol. 14, 1983–2000 (2014)

    Article  Google Scholar 

  2. I. F. Cruz, C. Freire, J. P. Araújo, C. Pereira and A. M. Pereira, Multifunctional ferrite nanoparticles: from current trends toward the future. Magnetic nanostructured materials (Elsevier) 59–116 (2018)

  3. S. Sharma, K. Daya, S. Sharma, M. Singh, Ultra low loss soft magnetic nanoparticles for applications up to S-band. Appl. Phys. Lett. 103, 35 (2013)

    Article  Google Scholar 

  4. G. Aravind, D. Ravinder, V. Nathanial, Structural and electrical properties of Li–Ni nanoferrites synthesised by citrate gel autocombustion method. Phys. Res. Int. (2014). https://doi.org/10.1155/2014/672739

    Article  Google Scholar 

  5. J.A. Vara, P.N. Dave, S. Chaturvedi, The catalytic investigation of nanoferrites on the thermal decomposition behavior of AN-based composite solid propellant. Part. Sci. Technol. 39, 1–9 (2021)

    Article  Google Scholar 

  6. M.K. Bharti, S. Gupta, S. Chalia, I. Garg, P. Thakur, A. Thakur, Potential of magnetic nanoferrites in removal of heavy metals from contaminated water: mini review. J. Supercond. Novel Magn. 33, 3651–3665 (2020)

    Article  Google Scholar 

  7. J.H. Hankiewicz, J. Stoll, J. Stroud, J. Davidson, K. Livesey, K. Tvrdy, A. Roshko, S.E. Russek, K. Stupic, P. Bilski, Nano-sized ferrite particles for magnetic resonance imaging thermometry. J. Magn. Magn. Mater. 469, 550–557 (2019)

    Article  ADS  Google Scholar 

  8. R. Verma, A. Chauhan, R. Kalia, K. M. Batoo and R. Kumar, Magnetic nanoferrites as an alternative for magnetic resonance imaging application. Magnetic Nanoferrites and their Composites (Elsevier) 237–56 (2023)

  9. K. Malaie, M.R. Ganjali, Spinel nano-ferrites for aqueous supercapacitors; linking abundant resources and low-cost processes for sustainable energy storage. J Energy Storage 33, 102097 (2021)

    Article  Google Scholar 

  10. M.N. Akhtar, M. Yousaf, Y. Lu, M.A. Khan, A. Sarosh, M. Arshad, M. Niamat, M. Farhan, A. Ahmad, M.U. Khallidoon, Physical, structural, conductive and magneto-optical properties of rare earths (Yb, Gd) doped Ni–Zn spinel nanoferrites for data and energy storage devices. Ceramics Int. 47, 11878–11886 (2021)

    Article  Google Scholar 

  11. R. Kershi, Spectroscopic, elastic, magnetic and optical studies of nanocrystallite and nanoferro-fluids Co ferrites towards optoelectronic applications. Mater. Chem. Phys. 248, 122941 (2020)

    Article  Google Scholar 

  12. V.L.S. Vatsalya, G.S. Sundari, C.S. Sridhar, I.L. Prasanna, C.S. Lakshmi, Studies on nano crystalline copper doped Nickel Zinc ferrites for optoelectronic applications. J. Lumin. 252, 119314 (2022)

    Article  Google Scholar 

  13. M.K. Bharti, S. Chalia, P. Thakur, S. Sridhara, A. Thakur, P. Sharma, Nanoferrites heterogeneous catalysts for biodiesel production from soybean and canola oil: a review. Environ. Chem. Lett. 19, 3727–3746 (2021)

    Article  Google Scholar 

  14. S. Rana, A. Gallo, R. Srivastava, R. Misra, On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: functionalization, conjugation and drug release kinetics. Acta Biomater. 3, 233–242 (2007)

    Article  Google Scholar 

  15. S. Gautam, V. Thakur and N. Goyal, Nanoferrites as drug carriers in targeted drug delivery applications. Applications of Nanostructured Ferrites (Elsevier) pp. 161–178 (2023)

  16. C.R. Vestal, Z.J. Zhang, Normal micelle synthesis and characterization of MgAl2O4 spinel nanoparticles. J. Solid State Chem. 175, 59–62 (2003)

    Article  ADS  Google Scholar 

  17. M.A. Baqiya, A. Taufiq, A.K. Sunaryono, M. Zainuri, S. Pratapa, D. Triwikantoro, Spinel-structured nanoparticles for magnetic and mechanical applications. Magnetic Spinels-Synthesis, Properties and Applications (Intech Open, London, 2017), pp.253–272

    Google Scholar 

  18. A. Omri, M. Bejar, E. Dhahri, M. Es-Souni, M. Valente, M. Graça, L. Costa, Electrical conductivity and dielectric analysis of La0.75 (Ca, Sr)0.25 Mn0.85Ga0.15O3 perovskite compound. J. Alloys Compd. 536, 173–178 (2012)

    Article  Google Scholar 

  19. W.A.I. Tabaza, Synthesis and characterization of MgAl2O4 and (MgxZn1-x) Al2O4) mixed spinel phospors. Thesis, University of the Free State (2014)

  20. K.S. Abedini, G. Mahmoudzadeh, S. Madani, S. Sepehr, S. Manie, S. Moradi, F. Gharib, S.A. Mehrdad, A.P. Abromand, Determination of magnetic properties of nano-size CoFe2O4 particles synthesized by combination of sol-gel auto-combustion and ultrasonic irradiation techniques. J. Theor. Appl. Phys. 2, 1–4 (2010)

    Google Scholar 

  21. D. Erdem, N.S. Bingham, F.J. Heiligtag, N. Pilet, P. Warnicke, L.J. Heyderman, M. Niederberger, CoFe2O4 and CoFe2O4-SiO2 nanoparticle thin films with perpendicular magnetic anisotropy for magnetic and magneto-optical applications. Adv. Function. Mater. 26, 1954–1963 (2016)

    Article  Google Scholar 

  22. S. Hcini, A. Omri, M. Boudard, M.L. Bouazizi, A. Dhahri, K. Touileb, Microstructural, magnetic and electrical properties of Zn0.4M0.3Co0.3Fe2O4 (M= Ni and Cu) ferrites synthesized by sol–gel method. J. Mater. Sci. Mater. Electron. 29, 6879–6891 (2018)

    Article  Google Scholar 

  23. A. Omelyanchik, M. Salvador, F. D’orazio, V. Mameli, C. Cannas, D. Fiorani, A. Musinu, M. Rivas, V. Rodionova, G. Varvaro, Magnetocrystalline and surface anisotropy in CoFe2O4 nanoparticles. Nanomaterials 10, 1288 (2020)

    Article  Google Scholar 

  24. M. Khodaei, S.S. Ebrahimi, Y.J. Park, J.M. Ok, J.S. Kim, J. Son, S. Baik, Strong in-plane magnetic anisotropy in (111)-oriented CoFe2O4 thin film. J. Magn. Magn. Mater. 340, 16–22 (2013)

    Article  ADS  Google Scholar 

  25. K. Maaz, A. Mumtaz, S. Hasanain, A. Ceylan, Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308, 289–295 (2007)

    Article  ADS  Google Scholar 

  26. M. Anupama, N. Srinatha, S. Matteppanavar, B. Angadi, B. Sahoo, B. Rudraswamy, Effect of Zn substitution on the structural and magnetic properties of nanocrystalline NiFe2O4 ferrites. Ceramics Int. 44, 4946–4954 (2018)

    Article  Google Scholar 

  27. W. Chiu, S. Radiman, R. Abd-Shukor, M. Abdullah, P. Khiew, Tunable coercivity of CoFe2O4 nanoparticles via thermal annealing treatment. J. Alloys Compd. 459, 291–297 (2008)

    Article  Google Scholar 

  28. A. Hilczer, K. Kowalska, E. Markiewicz, A. Pietraszko, B. Andrzejewski, Dielectric and magnetic response of SrFe12O19–CoFe2O4 composites obtained by solid state reaction. Mater. Sci. Eng. B 207, 47–55 (2016)

    Article  Google Scholar 

  29. S. Hcini, A. Selmi, H. Rahmouni, A. Omri, M.L. Bouazizi, Structural, dielectric and complex impedance properties of T0.6Co0.4Fe2O4 (T= Ni, Mg) ferrite nanoparticles prepared by sol gel method. Ceramics Int. 43, 2529–2536 (2017)

    Article  Google Scholar 

  30. A. Franco and V. S. Zapf, High temperature magnetic properties of Co1–xMgxFe2O4 nanoparticles prepared by forced hydrolysis method. J. Appl. Phys. 111 (2012)

  31. M.A. Lumbantoruan, E. Suharyadi, Effect of Zn on dielectric properties of Co-ZnFe2O4 magnetic nanoparticles. Key Eng. Mater. 840, 448–453 (2020)

    Article  Google Scholar 

  32. M.M. El-Masry, R. Ramadan, Enhancing the properties of PVDF/MFe2O4; (M: Co–Zn and Cu–Zn) nanocomposite for the piezoelectric optronic applications. J. Mater. Sci. Mater. Electron. 33, 15946–15963 (2022)

    Article  Google Scholar 

  33. E.-M. Mai and R. Ramadan, Study of PVDF/(Co-ZnFe2O4 and Cu-ZnFe2O4) nanocomposite for the piezo-phototronics applications (2022)

  34. G.V. Duong, R.S. Turtelli, W. Nunes, E. Schafler, N. Hanh, R. Grössinger, M. Knobel, Ultrafine Co1−xZnxFe2O4 particles synthesized by hydrolysis: effect of thermal treatment and its relationship with magnetic properties. J. Non-Crystall. Solids 353, 805–807 (2007)

    Article  ADS  Google Scholar 

  35. R. Arulmurugan, B. Jeyadevan, G. Vaidyanathan, S. Sendhilnathan, Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation. J. Magn. Magn. Mater. 288, 470–477 (2005)

    Article  ADS  Google Scholar 

  36. M. Assel, A. Altarawneh, R. Ghazy, O.M. Hemeda, A.M.A. Henaish, M. Mostafa, Correlation between structural, cation distribution with dielectric spectra and magnetic properties for Co–Zn ferrite doped with La3+ ions. Ceramics Int. 49, 14215–14224 (2023)

    Article  Google Scholar 

  37. H.S. Mund, B.L. Ahuja, Structural and magnetic properties of Mg doped cobalt ferrite nano particles prepared by sol-gel method. Mater. Res. Bull. 85, 228–233 (2017)

    Article  Google Scholar 

  38. S. Mandal, S. Mukherjee, Magnetocaloric effect and critical behaviour in zinc doped cobalt ferrite nanoparticles. J. Solid State Chem. 323, 124008 (2023)

    Article  Google Scholar 

  39. H.S. Mund, S. Tiwari, J. Sahariya, M. Itou, Y. Sakurai, B.L. Ahuja, Investigation of orbital magnetization in inverse spinel cobalt ferrite using magnetic Compton scattering. J. Appl. Phys. 110, 073914 (2011)

    Article  ADS  Google Scholar 

  40. S. Dhaka, S. Kumar, K. Poonia, V. Singh, K. Dhaka, H.S. Mund, Effect of annealing temperature on structural and magnetic properties of nano-cobalt ferrite. J. Mater. Sci. Mater. Electron. 32, 16392–16399 (2021)

    Article  Google Scholar 

  41. N. Kaur, M. Kaur, Processing and application of ceramics. Proc. Appl. Ceram. 8(3), 137–143 (2014)

    Article  Google Scholar 

  42. L.B. Tahar, H. Basti, F. Herbst, L. Smiri, J. Quisefit, N. Yaacoub, J. Grenèche, S. Ammar, Co1−xZnxFe2O4 (0≤ x≤ 1) nanocrystalline solid solution prepared by the polyol method: characterization and magnetic properties. Mater. Res. Bull. 47, 2590–1598 (2012)

    Article  Google Scholar 

  43. Q. Lin, Y. He, J. Lin, F. Yang, L. Wang, J. Dong, Structural and magnetic studies of Mg substituted cobalt composite oxide catalyst Co1−xMgxFe2O4. J. Magn. Magn. Mater. 469, 89 (2019)

    Article  ADS  Google Scholar 

  44. M. Chakrabarti, D. Sanyal, A. Chakrabarti, Preparation of Zn(1–x)CdxFe2O4 (x = 0.0, 0.1, 0.3, 0.5, 0.7 and 1.0) ferrite samples and their characterization by Mössbauer and positron annihilation techniques. J. Phys. Condens. Matter 19, 236210 (2007)

    Article  ADS  Google Scholar 

  45. H. Sozeri, Z. Durmus, A. Baykal, Structural and magnetic properties of triethylene glycol stabilized ZnxCo1−xFe2O4 nanoparticles. Mater. Res. Bull. 47, 2442–2448 (2012)

    Article  Google Scholar 

  46. A. López-Ortega, E. Lottini, C.J. Fernandez, C. Sangregorio, Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem. Mater. 27, 4048–4056 (2015)

    Article  Google Scholar 

  47. Y. Köseoğlu, F. Alan, M. Tan, R. Yilgin, M. Öztürk, Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram. Int. 38, 3625–3634 (2012)

    Article  Google Scholar 

  48. M. Anwar, F. Ahmed, B.H. Koo, Enhanced relative cooling power of Ni1−xZnxFe2O4 (0.0⩽ x⩽ 0.7) ferrites. Acta Mater. 71, 100–107 (2014)

    Article  ADS  Google Scholar 

  49. A. Mahmood, M.F. Warsi, M.N. Ashiq, M. Ishaq, Substitution of La and Fe with Dy and Mn in multiferroic La1−xDyxFe1−yMnyO3 nanocrystallites. J. Magn. Magn. Mater. 327, 64–70 (2013)

    Article  ADS  Google Scholar 

  50. A. Abdeen, O. Hemeda, E. Assem, M. El-Sehly, Structural, electrical and transport phenomena of Co ferrite substituted by Cd. J. Magn. Magn. Mater. 238, 75–83 (2002)

    Article  ADS  Google Scholar 

  51. M. Ahmed, H. Afify, I. El Zawawia, A. Azab, Novel structural and magnetic properties of Mg doped copper nanoferrites prepared by conventional and wet methods. J. Magn. Magn. Mater. 324, 2199–2204 (2012)

    Article  ADS  Google Scholar 

  52. S. Hcini, S. Zemni, A. Triki, H. Rahmouni, M. Boudard, Size mismatch, grain boundary and bandwidth effects on structural, magnetic and electrical properties of Pr0.67Ba0.33MnO3 and Pr0.67Sr0.33MnO3 perovskites. J. Alloys Compd. 509, 1394–1400 (2011)

    Article  Google Scholar 

  53. A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci. Eng. 2, 154–160 (2012)

    Article  Google Scholar 

  54. R. Das and S. Sarkar, Determination of intrinsic strain in poly (vinylpyrrolidone)-capped silver nano-hexapod using X-ray diffraction technique. Curr. Sci. 775–778 (2015)

  55. D. Balzar, H. Ledbetter, Voigt-function modeling in Fourier analysis of size-and strain-broadened X-ray diffraction peaks. J. Appl. Crystallogr. 26, 97–103 (1993)

    Article  ADS  Google Scholar 

  56. B. Warren, B. Averbach, The separation of cold-work distortion and particle size broadening in X-ray patterns. J. Appl. Phys. 23, 497–497 (1952)

    Article  ADS  Google Scholar 

  57. R. Jacob, J. Isac, X-ray diffraction line profile analysis of BaSr0.6Fe0.4TiO3 [BSFTO]. Int. J. Chem. Stud. 2, 12–21 (2015)

    Google Scholar 

  58. A. Omri, E. Dhahri, B.F.O. Costa, M.A. Valente, Structural, electric and dielectric properties of Ni0.5Zn0.5FeCoO4 ferrite prepared by sol–gel. J. Magn. Magn. Mater. 499, 166243 (2020)

    Article  Google Scholar 

  59. A. Omri, E. Dhahri, B.F.O. Costa, M.A. Valente, Study of structural, morphological, Mössbauer and dielectric properties of NiFeCoO4 prepared by a sol gel method. J. Sol-Gel Sci. Technol. 98, 364–375 (2021)

    Article  Google Scholar 

  60. M. Horchani, A. Omri, A. Benali, M.S. Eddine, A. Tozri, E. Dhahri, M. Graca, M. Valente, S. Jakka, B. Costa, Synthesis and investigation on the microstructural and electrical proprieties of Ni0.1Co0.5Cu0.4Fe2O4 ferrite prepared using sol–gel route. J. Solid State Chem. 308, 122898 (2022)

    Article  Google Scholar 

  61. S.G. Pandya, J.P. Corbett, W.M. Jadwisienczak, M.E. Kordesch, Structural characterization and X-ray analysis by Williamson-Hall method for erbium doped aluminum nitride nanoparticles, synthesized using inert gas condensation technique. Physica E: Low-Dimension. Syst. Nanostruct. 79, 98–102 (2016)

    Article  ADS  Google Scholar 

  62. V. Mote, Y. Purushotham, B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 1–8 (2012)

    Article  Google Scholar 

  63. G. Datt, M.S. Bishwas, M.M. Raja, A. Abhyankar, Observation of magnetic anomalies in one-step solvothermally synthesized nickel–cobalt ferrite nanoparticles. Nanoscale 8, 5200–5213 (2016)

    Article  ADS  Google Scholar 

  64. P. Chirawatkul, S. Khoonsap, S. Phumying, C. Kaewhan, S. Pinitsoontorn, S. Maensiri, Cation distribution and magnetic properties of CoxMg1−xFe2O4 nanoparticles. J. Alloys Compd. 697, 249–256 (2017)

    Article  Google Scholar 

  65. T. Yu, Z. Shen, Y. Shi, J. Ding, Cation migration and magnetic ordering in spinel CoFe2O4 powder: micro-Raman scattering study. J. Phys. Condens. Matter 14, L613 (2002)

    Article  ADS  Google Scholar 

  66. W. Wang, Z. Ding, X. Zhao, S. Wu, F. Li, M. Yue, J.P. Liu, Microstructure and magnetic properties of MFe2O4 (M= Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method. J. Appl. Phys. 117, 17A328 (2015)

    Article  Google Scholar 

  67. F. Nekvapil, A. Bunge, T. Radu, S. Cinta Pinzaru, R. Turcu, Raman spectra tell us so much more: Raman features and saturation magnetization for efficient analysis of manganese zinc ferrite nanoparticles. J. Raman Spectrosc. 51, 959–968 (2020)

    Article  ADS  Google Scholar 

  68. R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, J. Švec, V. Enev, M. Hajdúchová, Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol–gel combustion method. Adv. Nat. Sci.: Nanosci. Nanotechnol. 8, 045002 (2017)

    ADS  Google Scholar 

  69. S. Singh, S. Munjal, N. Khare, Strain/defect induced enhanced coercivity in single domain CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 386, 69–73 (2015)

    Article  ADS  Google Scholar 

  70. A. Benali, L. Saher, M. Bejar, E. Dhahri, M. Graca, M. Valente, P. Sanguino, L. Helguero, K. Bachari, A.M. Silva, Synthesis and physico-chemical characterization of Bi-doped Cobalt ferrite nanoparticles: cytotoxic effects against breast and prostate cancer cell lines. Eur. Phys. J. Plus 137, 559 (2022)

    Article  Google Scholar 

  71. G. Datt, A. Abhyankar, Dopant driven tunability of dielectric relaxation in MxCo (1–x) Fe2O4 (M: Zn2+, Mn2+, Ni2+) nano-ferrites. J. Appl. Phys. (2017). https://doi.org/10.1063/1.4990275

    Article  Google Scholar 

  72. S.M. Qaid, B. Al-Asbahi, H.M. Ghaithan, M. AlSalhi, Optical and structural properties of CsPbBr3 perovskite quantum dots/PFO polymer composite thin films. J. Colloid Interface Sci. 563, 426–434 (2020)

    Article  ADS  Google Scholar 

  73. D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, E. Tondello, Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt(II) precursor by chemicalvapor deposition. Chem. Mater. 13, 588–593 (2001)

    Article  Google Scholar 

  74. C.-S. Cheng, M. Serizawa, H. Sakata, T. Hirayama, Electrical conductivity of Co3O4 films prepared by chemical vapour deposition. Mater. Chem. Phys. 53, 225–230 (1998)

    Article  Google Scholar 

  75. M. Lenglet, C.K. Jørgensen, Reinvestigation of the optical properties of Co3O4. Chem. Phys. Lett. 229, 616–620 (1994)

    Article  ADS  Google Scholar 

  76. K.M.E. Miedzinska, B.R. Hollebone, J.G. Cook, An assigment of the optical absorption spectrum of mixed valence Co3O4 spinel films. J. Phys. Chem. Solids 48, 649–656 (1987)

    Article  ADS  Google Scholar 

  77. R. Mguedla, A.B.J. Kharrat, O. Taktak, H. Souissi, S. Kammoun, K. Khirouni, W. Boujelben, Experimental and theoretical investigations on optical properties of multiferroic PrCrO3 ortho-chromite compound. Optic. Mater. 101, 109742 (2020)

    Article  Google Scholar 

  78. Gagandeep, K. Singh, B. Lark, H. Sahota, Attenuation measurements in solutions of some carbohydrates. Nuclear Sci. Eng. 134, 208–217 (2000)

    Article  ADS  Google Scholar 

  79. N.R. Dhineshbabu, V. Rajendran, N. Nithyavathy, R. Vetumperumal, Study of structural and optical properties of cupric oxide nanoparticles. Appl. Nanosci. 6, 933–939 (2016)

    Article  ADS  Google Scholar 

  80. M.A. Maksoud, G.S. El-Sayyad, A.M. El-Khawaga, M. Abd Elkodous, A. Abokhadra, M.A. Elsayed, M. Gobara, L. Soliman, H. El-Bahnasawy, A. Ashour, Nanostructured Mg substituted Mn-Zn ferrites: a magnetic recyclable catalyst for outstanding photocatalytic and antimicrobial potentials. J. Hazard. Mater. 399, 123000 (2020)

    Article  Google Scholar 

  81. A. Barhoumi, G. Leroy, B. Duponchel, J. Gest, L. Yang, N. Waldhoff, S. Guermazi, Aluminum doped ZnO thin films deposited by direct current sputtering: structural and optical properties. Superlattices Microstruct. 82, 483–498 (2015)

    Article  ADS  Google Scholar 

  82. G. Cody, Urbach edge of crystalline and amorphous silicon: a personal review. J. Non-crystall. Solids 141, 3–15 (1992)

    Article  ADS  Google Scholar 

  83. S. Husain, A.O. Keelani, W. Khan, Influence of Mn substitution on morphological, thermal and optical properties of nanocrystalline GdFeO3 orthoferrite. Nano-Struct. Nano-Objects 15, 17–27 (2018)

    Article  Google Scholar 

  84. P. Petrik, N. Kumar, G. Juhasz, C. Major, B. Fodor, E. Agocs, T. Lohner, S.F. Pereira, H.P. Urbach, M. Fried, Optical characterization of macro-, micro- and nanostructures using polarized light. J. Phys. Conf. Ser. 558, 012008 (2014)

    Article  Google Scholar 

  85. P. Petrik, E. Agocs, J. Volk, I. Lukacs, B. Fodor, P. Kozma, T. Lohner, S. Oh, Y. Wakayama, T. Nagata, M. Fried, Resolving lateral and vertical structures by ellipsometry using wavelength range scan. Thin Solid Films 571, 579–583 (2014)

    Article  ADS  Google Scholar 

  86. B. Fodor, E. Agocs, B. Bardet, T. Defforge, F. Cayrel, D. Alquier, M. Fried, G. Gautier, P. Petrik, Porosity and thickness characterization of porous Si and oxidized porous Si layers—an ultraviolet–visible–mid infrared ellipsometry study. Microporous Mesoporous Mater. 227, 112–120 (2016)

    Article  Google Scholar 

  87. N. Tounsi, A. Barhoumi, F.C. Akkari, M. Kanzari, H. Guermazi, S. Guermazi, Structural and optical characterization of copper oxide composite thin films elaborated by GLAD technique. Vacuum 121, 9–17 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Tunisian Ministry of Higher Education and Scientific Research with the collaboration of national funds from FCT – Fundação para a Ciência e a Tecnologia, I.P., within the project UID/04564/2020. Access to TAIL-UC facility funded under QREN-Mais Centro Project No. ICT_2009_02_012_1890 is gratefully acknowledged.

Funding

This work was funded by the Researchers Supporting Project Number (RSP2024R243) at King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fatmi.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messaoudi, A., Omri, A., Benali, A. et al. Prediction study of structural, thermal, and optical characterization of Co0.6Zn0.4Fe2O4 cubic spinel synthesized via sol–gel method for energy storage. J. Korean Phys. Soc. 84, 958–968 (2024). https://doi.org/10.1007/s40042-024-01078-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-024-01078-8

Keywords

Navigation