Log in

High-relativistic effect on ion acoustic soliton in electron–positron–ion plasma

  • Original Paper - Fluids, Plasma and Phenomenology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In a high-relativistic electron–positron–ion (epi) plasma, the Korteweg–de Vries (KdV) equation governs ion acoustic waves. This investigation focuses on epi plasma, comprising high-relativistic thermal ions, non-thermal electrons, and thermal positrons, where only rarefactive solitons are shown to exist. Specifically, the fast ion acoustic mode is found to produce tiny amplitude rarefactive KdV solitons. Moreover, the introduction of variable ion species temperatures not only significantly alters the fundamental characteristics (amplitude and width) of ion acoustic solitons (IAS) but also gives rise to a new regime for their existence. In addition, the soliton amplitude decreases as the ion-to-electron temperature ratio rises, while the relativistic factor increases the soliton’s amplitude. These findings have potential applications in both astrophysical plasmas and inertial confinement fusion plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S.L. Shapiro, S.A. Teukolsky, The Physics of Compact Objects (John Wiley, New York, 1983)

    Google Scholar 

  2. S.A. Voronov, A.M. Galper, V.G. Kirilov-Ugryumov, S.V. Koldashov, A.V. Popov, JETP Lett. 43, 307 (1986)

    ADS  Google Scholar 

  3. A.M. Galper, S.V. Koldashov, V.V. Mikhailov, S.A. Voronov, Radiat. Meas. 26, 375 (1996)

    Google Scholar 

  4. M.R. Hossen, A.A. Mamun, Braz. J. Phys. 44, 673 (2014)

    ADS  Google Scholar 

  5. M.R. Hossen, S.A. Ema, A.A. Mamun, Commun. Theo. Phys. 62, 888 (2014)

    Google Scholar 

  6. M.A. Hossen, M.G. Shah, M.R. Hossen, A.A. Mamun, Commun. Theor. Phys. 67, 458 (2017)

    ADS  Google Scholar 

  7. M. Tribeche, K. Aoutou, S. Younsi, R. Amour, Phys. Plasmas 16, 072103 (2009)

    ADS  Google Scholar 

  8. M.C. Begelman, R.D.M. Blanford, J. Rees. Rev. Mod. Phys. 56, 255 (1984)

    ADS  Google Scholar 

  9. H.R. Miller, P.J. Witta, Active Galactic Nuclei (Springer, Berlin, 1987)

    Google Scholar 

  10. M.L. Burns, Positron–Electron Pairs in Astrophysics (American Institute of Physics, Melville, 1983)

    Google Scholar 

  11. G.W. Gibbons, S.W. Hawking, S. Siklos, The Very Early Universe (Cambridge University Press, Cambridge, 1983)

    Google Scholar 

  12. S. Singh, T. Honzawa, Phys. Fluids B 5, 2093 (1993)

    ADS  Google Scholar 

  13. H.K. Malik, S. Singh, R.P. Dahiya, Phys. Plasmas 1, 1137 (1994)

    ADS  Google Scholar 

  14. T.S. Gill, H. Kaur, N.S. Saini, J. Plasma Phys. 71, 23 (2004)

    Google Scholar 

  15. C. Grabbe, J. Geophys. Res. 94, 17299 (1989)

    ADS  Google Scholar 

  16. H. Ikezi, Phys. Fluids 16, 1668 (1973)

    ADS  Google Scholar 

  17. J.I. Vette, Summary of Particle Population in the Magnetosphere, vol. 305 (Reidel, Dordrecht, 1970)

    Google Scholar 

  18. J. Arons, Space Sci. Rev. 24, 417 (1979)

    ADS  Google Scholar 

  19. A. Shah, R. Saeed, Phys. Lett. A 373, 4164 (2009)

    ADS  Google Scholar 

  20. E.I. El-Awady, S.A. El-Tantawy, W.M. Moslem, P.K. Shukla, Phys. Lett. A 374, 3216 (2010)

    ADS  Google Scholar 

  21. T.S. Gill, A. Singh, H. Kaur, N.S. Saini, P. Bala, Phys. Lett. A 361, 364 (2007)

    ADS  Google Scholar 

  22. T.S. Gill, A.S. Bains, N.S. Saini, Can. J. Phys. 87, 861–866 (2009)

    ADS  Google Scholar 

  23. W.M. Moslem, I. Kourakis, P.K. Shukla, R. Schlickeiser, Phys. Plasmas 14, 102901 (2007)

    ADS  Google Scholar 

  24. S. Mahmood, N. Akhtar, Eur. Phys. J. D 49, 217 (2008)

    ADS  Google Scholar 

  25. S. Mahmood, H. Mushtaq, H. Saleem, New J. Phys. 5, 289 (2003)

    Google Scholar 

  26. S. Moolla, I.J. Lazarus, R. Bharuthram, J. Plasma Phys. 78(5), 545 (2012)

    ADS  Google Scholar 

  27. M. Sarker, M.R. Hossen, M.G. Shah, B. Hosen, A.A. Mamun, Z. Naturforsch. 2018, 1 (2018)

    Google Scholar 

  28. K. Javidan, D. Saadatmand, Astrophys. Space Sci. 333, 471–475 (2011)

    ADS  Google Scholar 

  29. A. Shah, S. Mahmood, Q. Haque, Phys. Plasmas 18, 114501 (2011)

    ADS  Google Scholar 

  30. H. Mehdian, D. Nobahar, K. Hajisharif, Indian J. Phys. 2018, 1 (2018)

    Google Scholar 

  31. I. Kourakis, F. Verheest, N. Cramer, Phys. Plasmas 14(22), 1 (2007)

    Google Scholar 

  32. I. Kourakis, W.M. Moslem, U.S. Abdelsalam, M.R. Sabry, P.K. Shukla, Plasma Fusion Res. 4, 1 (2009)

    Google Scholar 

  33. D.K. Ghosh, P. Chatterjee, P.K. Mandal, B. Sahu, Pramana 81, 491 (2013)

    ADS  Google Scholar 

  34. R. Sarma, A.P. Misra, N. Adhikary, Chin. Phys. B 27(10), 1 (2018)

    Google Scholar 

  35. S.K. El-Labany, W.F. El-Taibany, E.E. Behery, R. Abd-Elbaki, Sci. Rep. 10, 16152 (2020)

    ADS  Google Scholar 

  36. U.M. Abdelsalam, W.M. Moslem, P.K. Sukla, Phys. Lett. A 372, 4057 (2008)

    ADS  Google Scholar 

  37. A. Biswas, D. Chakraborty, S. Pramanik, S. Ghosh, Phys. Plasmas 28, 062105 (2021)

    ADS  Google Scholar 

  38. M. Farooq, A. Mushtaq, J. Qasim, Contrib. Plasma Phys. 2018, 1 (2018)

    Google Scholar 

  39. A.N. Dev, M.K. Deka, R.K. Kalita, J. Sarma. Eur. Phys. J. Plus 135, 843 (2020)

    Google Scholar 

  40. J. Kalita, R. Das, K. Hosseini, D. Baleanu, S. Salahshour, Nonlinear Dyn. 111, 3701–3711 (2023)

    Google Scholar 

  41. A.E. Dubinov, A.A. Dubinova, Plasma Phys. Rep. 33, 859 (2007)

    ADS  Google Scholar 

  42. B.C. Kalita, R. Das, H.K. Sarmah, Phys. Plasmas 18, 012304 (2011)

    ADS  Google Scholar 

  43. B.C. Kalita, R. Das, H.K. Sarmah, Can. J. Phys. 88, 157 (2010)

    ADS  Google Scholar 

  44. K. Singh, V. Kumar, Phys. Plasmas 12, 052103 (2005)

    ADS  Google Scholar 

  45. W. Masood, H. Rizvi, Phys. Plasmas 17, 052314 (2010)

    ADS  Google Scholar 

  46. C. Grabbe, Geophys. Res. 94, 17299 (1989)

    ADS  Google Scholar 

  47. B. Shen, J. Meyer-ter-Vehn, Phys. Rev. E 65, 016405 (2001)

    ADS  Google Scholar 

  48. E.P. Liang, S.C. Wilks, M. Tabak, Phys. Rev. Lett. 81, 4887 (1998)

    ADS  Google Scholar 

  49. M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006)

    ADS  Google Scholar 

  50. K.A. Holcomb, T. Tajima, Phys. Rev. 40, 3809 (1989)

    ADS  Google Scholar 

  51. R. Saeed, A. Shah, M. Noaman-ul-Haq, Phys. Plasmas 17, 102301 (2010)

    ADS  Google Scholar 

  52. M.G. Hafez, M.R. Talukder, Astrophys. Space Sci. 359, 1 (2015)

    ADS  Google Scholar 

  53. M.G. Hafez, M.R. Talukder, R. Sakthivel, Indian J. Phys. 90, 603 (2016)

    ADS  Google Scholar 

  54. K. Javidan, H.R. Pakzad, Indian J. Phys. 86, 1037 (2012)

    ADS  Google Scholar 

  55. B.C. Kalita, R. Kalita, Commun. Theor. Phys. 63, 761 (2015)

    ADS  Google Scholar 

  56. H. Kaur, T.S. Gill, N.S. Saini, Chaos Soliton Fractals 42, 1638 (2009)

    ADS  Google Scholar 

  57. B.C. Kalita, R. Das, Phys. Plasmas 14, 072108 (2007)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jyotishmita Kalita or Bhargab Madhukalya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, J., Madhukalya, B. & Das, R. High-relativistic effect on ion acoustic soliton in electron–positron–ion plasma. J. Korean Phys. Soc. 84, 120–127 (2024). https://doi.org/10.1007/s40042-023-00955-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00955-y

Keywords

Navigation