Log in

Room-temperature ferromagnetism observed in graphene oxide

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigate magnetic properties of graphene oxide flake that have been locally oxidized using atomic force microscope (AFM) lithography. This approach reduces the possibility of magnetic contamination. Our Raman spectroscopy analysis reveals that the graphene oxide contains crystalline defects or disorders and differs from the pristine graphene in terms of its atomic structure. Using magnetic force microscopy measurements, we observe that the graphene oxide has a net magnetization pointing out of the surface plane. Furthermore, our magneto-optical Kerr effect data show small but clear hysteresis loops with non-zero remanent magnetization. We also conduct x-ray magnetic circular dichroism (XMCD) photoemission electron microscope measurements and identify remarkable asymmetry in carbon K edge spectra, which strongly suggests that the observed ferromagnetic order in the graphene oxide layer is intrinsic. A careful analysis of XMCD signals depending on the oxidized condition reveals the effects of chemical states of carbon atoms on the formation of ferromagnetic order in the graphene oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W. Han, R.K. Kawakami, M. Gmitra, J. Fabian, Nat. Nanotechnol. 9, 794–807 (2014)

    Article  ADS  Google Scholar 

  2. R.R. Nair, I.-L. Tsai, M. Sepioni, O. Lehtinen, J. Keinonen, A.V. Krasheninnikov, A.H. Castro Neto, M.I. Katsnelson, A.K. Geim, I.V. Grigorieva, Nat. Commun. 4, 2010 (2013)

    Article  ADS  Google Scholar 

  3. R. Chen, F. Luo, Y. Liu, Y. Song, Y. Dong, S. Wu, J. Cao, F. Yang, A. N’Diaye, P. Shafer, Y. Liu, S. Lou, J. Huang, X. Chen, Z. Fang, Q. Wang, D. **, R. Cheng, H. Yuan, R.J. Birgeneau, J. Yao, Nat. Commun. 12, 3952 (2021)

    Article  ADS  Google Scholar 

  4. C. Tang, B. Cheng, M. Aldosary, Z. Wang, Z. Jiang, K. Watanabe, T. Taniguchi, M. Bockrath, J. Shi, APL Mater. 6, 026401 (2018)

    Article  ADS  Google Scholar 

  5. C. Józsa, M. Popinciuc, N. Tombros, H.T. Jonkman, B.J. van Wees, Phys. Rev. B 79, 081402(R) (2009)

    Article  ADS  Google Scholar 

  6. N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, B.J. van Wees, Nature 448, 571–574 (2007)

    Article  ADS  Google Scholar 

  7. M. Wang, W. Huang, M.B. Chan-Park, C.M. Li, Nanotechnology 22, 105702 (2011)

    Article  ADS  Google Scholar 

  8. J. Zhou, Q. Wang, Q. Sun, X.S. Chen, Y. Kawazoe, P. Jena, Nano Lett. 9, 3867–3870 (2009)

    Article  ADS  Google Scholar 

  9. H. Ohldag, P. Esquinazi, E. Arenholz, D. Spemann, M. Rothermel, A. Setzer, T. Butz, New J. Phys. 12, 123012 (2010)

    Article  ADS  Google Scholar 

  10. O.O. Kapitanova, G.N. Panin, A.N. Baranov, T.W. Kang, J. Korean Phys. Soc. 81, 942–947 (2022)

    Article  Google Scholar 

  11. A.A. Alghyamah, S. Haider, U. Khalil, R. Khan, A. Haider, W.A. Almasry, R. Ihsan, T. Perveen, I. Wazeer, A. Chafidz, Curr. Appl. Phys. 400, 33–39 (2022)

    Google Scholar 

  12. S. Chen, M. He, Y.H. Zhang, V. Hsieh, Z. Fei, K. Watanabe, T. Taniguchi, D.H. Cobden, X. Xu, C.R. Dean, M. Yankowitz, Nat. Phys. 17, 374–380 (2020)

    Article  Google Scholar 

  13. M. Fan, J. Wu, J. Yuan, L. Deng, N. Zhong, L. He, J. Cui, Z. Wang, S.K. Behera, C. Zhang, J. Lai, B.I. Jawdat, R. Vajtai, P. Deb, Y. Hunag, J. Qian, J. Yang, J.M. Tour, J. Lou, C. Chu, D. Sun, P.M. Ajayan, Adv. Mater. 31, 1805778 (2019)

    Article  Google Scholar 

  14. R.R. Nair, M. Sepioni, I. Tsai, O. Lehtinen, J. Keinonen, A.V. Krasheninnikov, T. Thomson, A.K. Gein, I.V. Grigorieva, Nat. Phys. 8, 199–202 (2012)

    Article  Google Scholar 

  15. Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, Y. Chen, Nano Lett. 9, 220–224 (2009)

    Article  ADS  Google Scholar 

  16. I.S. Byun, D.W. Boukhvalov, S. Lee, W. Kim, J. Balk, H.J. Shin, C. Lee, Y.W. Son, Q.X. Jia, B.H. Park, J. Phys. D: Appl. Phys. 54, 074002 (2021)

    Article  ADS  Google Scholar 

  17. J. Li, X. Li, P. Zhao, D.Y. Lei, W. Li, J. Bai, Z. Ren, X. Xu, Carbon 84, 460–468 (2015)

    Article  Google Scholar 

  18. Y. Liu, N. Tang, X. Wan, Q. Feng, M. Li, Q. Xu, F. Liu, Y. Du, Sci. Rep. 3, 2566 (2013)

    Article  ADS  Google Scholar 

  19. I.S. Byun, W. Kim, D.W. Boukhvalov, I. Hwang, J.W. Son, G. Oh, J. Choi, D. Yoon, H. Cheong, J. Baik, H.J. Shin, H. Shiu, C.H. Chen, Y.W. Son, B.H. Park, NPG Asia Mater. 6, e102 (2014)

    Article  Google Scholar 

  20. Q. Liu, L. Wei, J. Wang, F. Pang, D. Luo, R. Cui, Y. Niu, X. Qin, Y. Liu, H. Sun, J. Yang, Y. Li, Nanoscale 4, 7084 (2012)

    Article  ADS  Google Scholar 

  21. J.M. Smolsky, A.V. Krasnoslobodtsev, Nano Res. 11, 6346–6359 (2018)

    Article  Google Scholar 

  22. C. Casiraghi, A.C. Ferrari, R. Ohr, D. Chu, J. Robertson, Diam. Relat. Mater. 13, 1416–1421 (2004)

    Article  ADS  Google Scholar 

  23. J. Červenka, M.I. Katsnelson, C.F.J. Flipse, Nat. Phys. 5, 840–844 (2009)

    Article  Google Scholar 

  24. H. Ohldag, T. Tyliszczak, T. Höhne, D. Spemann, P. Esquinazi, M. Ungureanu, T. Butz, Phys. Rev. Lett. 98, 187204 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National R&D Programs (No. 2022R1A2C3004135 and No. 2021M3F3A2A01037740) and Nano·Material Technology Development Program (No. 2021M3H4A1A03054864) through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT, and Korea Basic Science Institute (National research Facilities and Equipment Center) grant funded by the Ministry of Education (No. 2022R1A6C101A754). The authors thank Dr. Der-Hsin Wei and Chun-I Lu for their assistance with the PEEM measurement and providing the data. This work was partially supported by the use of the beamline 05B2 at Taiwan Light Source, NSRRC (National Synchrotron Radiation Research Center), for which we are grateful.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bae Ho Park or Wondong Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, D., Park, B.H., Lee, D.H. et al. Room-temperature ferromagnetism observed in graphene oxide. J. Korean Phys. Soc. 82, 786–792 (2023). https://doi.org/10.1007/s40042-023-00791-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00791-0

Keywords

Navigation