Log in

Multi-color metasurface hologram based on depth-division multiplexing method

  • Original Paper - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Multi-color holography using metasurface is being studied in various ways to overcome the limitations of conventional optical holography. In this paper, we propose and numerically demonstrate an efficient method to generate multi-color holographic images from metasurface based on the depth-division multiplexing technique. The proposed metasurface consists of two-dimensional array of single-sized TiO2 nanofins controlling the phase of transmitted light with cross-circular polarization based on wavelength-independent geometric phase. The meta-atom structure is optimized using systematic finite-difference time-domain simulations and high cross-polarization transmission efficiency of > 82% is simultaneously achieved at all three primary colors. Based on the optimized metasurface structure, a multi-color meta-hologram is designed by applying depth-division multiplexing technique. The holographic images generated by three-dimensional finite-difference time-domain simulations and numerical reconstruction based on Fresnel transformation agreed well with each other, demonstrating that the proposed method is effective in generating multi-color holographic images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Chang, X. Guo, X. Ni, Annu. Rev. Mater. Res. 48, 279–302 (2018). https://doi.org/10.1146/annurev-matsci-070616-124220

    Article  Google Scholar 

  2. M.K. Chen, Y. Wu, L. Feng, Q. Fan, M. Lu, T. Xu, D.P. Tsai, Principles, functions, and applications of optical meta-lens. Adv. Optical Mater. 9, 2001414 (2021). https://doi.org/10.1002/adom.202001414

    Article  Google Scholar 

  3. N. Yu, F. Capasso, Flat optics with designer metasurfaces. Nature Mater. 13, 139–150 (2014). https://doi.org/10.1038/nmat3839

    Article  ADS  Google Scholar 

  4. Z. Wei, Y. Cao, Su. **aopeng, Z. Gong, Y. Long, H. Li, Highly efficient beam steering with a transparent metasurface. Opt. Express 21, 10739–10745 (2013). https://doi.org/10.1364/OE.21.010739

    Article  ADS  Google Scholar 

  5. Intaravanne, Yuttana and Chen, **anzhong, Recent advances in optical metasurfaces for polarization detection and engineered polarization profiles, Nanophotonics 9, 5, 1003–1014 (2020) https://doi.org/10.1515/nanoph-2019-0479

  6. Pin Chieh Wu, Din ** Tsai et al., Nano Letters 17, 1, 445–452 (2017) https://doi.org/10.1021/acs.nanolett.6b04446

  7. Huang, Lingling, Zhang, Shuang and Zentgraf, Thomas, Metasurface holography: from fundamentals to applications, Nanophotonics 7, 6, 1169–1190 (2018) https://doi.org/10.1515/nanoph-2017-0118

  8. Stephanie C. Malek, Ho-Seok Ee, and Ritesh Agarwal, Strain Multiplexed Metasurface Holograms on a Stretchable Substrate, Nano Letters 17, 6, 3641–3645 (2017) https://doi.org/10.1021/acs.nanolett.7b00807

  9. Q. Jiang, G. **, L. Cao, When metasurface meets hologram: principle and advances. Adv. Opt. Photon. 11, 518–576 (2019). https://doi.org/10.1364/AOP.11.000518

    Article  Google Scholar 

  10. W. Zhao, B. Liu, H. Jiang, J. Song, Y. Pei, Y. Jiang, Full-color hologram using spatial multiplexing of dielectric metasurface. Opt. Lett. 41, 147–150 (2016). https://doi.org/10.1364/OL.41.000147

    Article  ADS  Google Scholar 

  11. Weiwei Wan, Jie Gao, and **aodong Yang, Full-Color Plasmonic Metasurface Holograms, ACS Nano. 10, 12, 10671–10680 (2016) https://doi.org/10.1021/acsnano.6b05453

  12. Lei **, Cheng-Wei Qiu et al., Nano Letters 18, 12, 8016–8024 (2018) https://doi.org/10.1021/acs.nanolett.8b04246

  13. Yao-Wei Huang, Wei Ting Chen, Wei-Yi Tsai, Pin Chieh Wu, Chih-Ming Wang, Greg Sun, and Din ** Tsai, Nano Letters 15, 5, 3122–3127 (2015) https://doi.org/10.1021/acs.nanolett.5b00184

  14. Michal Makowski, Maciej Sypek, Andrzej Kolodziejczyk, and Grzegorz Mikula, Three-plane phase-only computer hologram generated with iterative Fresnel algorithm, Optical Engineering 44, 12, 125805 (2005)

  15. H. Zheng, C. Zhou, X. Shui, Yu. Yingjie, Computer-generated full-color phase-only hologram using a multiplane iterative algorithm with dynamic compensation. Appl. Opt. 61, B262–B270 (2022). https://doi.org/10.1364/AO.444756

    Article  ADS  Google Scholar 

  16. S. Pancharatnam, Generalized theory of interference, and its applications. Proc. Indian Acad. Sci. 44, 247–262 (1956). https://doi.org/10.1007/BF03046050

    Article  Google Scholar 

  17. Berry Michael Victor, 1984 Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984). https://doi.org/10.1098/rspa.1984.0023

    Article  ADS  MATH  Google Scholar 

  18. J.W. Goodman, Introduction to Fourier Optics, 2nd edn. (McGraw-Hill, New York, USA, 1996), pp.63–125

    Google Scholar 

  19. H.-S. Ee, H.-G. Park, Design of tunable silicon metasurfaces with cross-polarization transmittance over 80%. Phys. Scr. 93, 8 (2018). https://doi.org/10.1088/1402-4896/aacd8b

    Article  Google Scholar 

  20. J.R. Devore, Refractive indices of rutile and sphalerite. J. Opt. Soc. Am. 41, 416–419 (1951)

    Article  ADS  Google Scholar 

  21. I.H. Malitson, Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55, 1205–1208 (1965). https://doi.org/10.1364/JOSA.55.001205

    Article  ADS  Google Scholar 

  22. Parameter values for ultra-high definition television systems for production and international programme exchange, Recommendation ITU-R BT.2020, Aug. 2012.

  23. H. Ahmed, S. Naureen et al., Phase engineering with all-dielectric metasurfaces for focused-optical-vortex (FOV) beams with high cross-polarization efficiency. Opt. Mater. Express 10, 434–448 (2020). https://doi.org/10.1364/OME.381354

    Article  ADS  Google Scholar 

  24. Qiong He, Shulin Sun, Lei Zhou, Tunable/Reconfigurable Metasurfaces: Physics and Applications, Research 2019, 1849272 (2019) https://doi.org/10.34133/2019/1849272

Download references

Acknowledgements

This work was supported by the research grant of Kongju National University in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Seok Ee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, N., Ee, HS. Multi-color metasurface hologram based on depth-division multiplexing method. J. Korean Phys. Soc. 82, 166–172 (2023). https://doi.org/10.1007/s40042-022-00694-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00694-6

Keywords

Navigation