Log in

Spin glass in the disordered J-J‘ Ising model: simulated annealing study

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This study examined the disordered Ising model on the two-dimensional \(L \times L\) square lattice with nearest neighbor and diagonal-neighbor interactions using standard Monte Carlo and simulated annealing tools. The randomness including diagonal-neighbor interactions with N\(\acute{e}\)el or stripe antiferromagnetic (AF) orders were found to be controlled by ratio x. N\(\acute{e}\)el and stripe AF phases have been observed for small and large values of x, respectively. The unconventional paramagnetic (PM) phase is obtained between the N\(\acute{e}\)el and stripe AF phases at nearly zero temperature T. The physical properties of the unconventional PM phase were investigated by computing the squared Edwards-Anderson order parameter \(<q^2>\) in the thermodynamic limit. Consequently, it was confirmed that the unconventional PM phase implied an spin glass phase with finite value of \(<q^2>\) at low T in the thermodynamic limit. Finally, the entropy exponent of 0.5 was obtained and found to be consistent with former results of Ising model with disordered nearest neighbor and dilute diagonal-neighbor couplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Onsager, Phys. Rev. 65, 117 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  2. K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801 (1986)

    Article  ADS  Google Scholar 

  3. S.F. Edwards, P.W. Anderson, J. Phys. F 5, 965 (1975)

    Article  ADS  Google Scholar 

  4. S. **, A. Sen, A.W. Sandvik, Phys. Rev. Lett. 108, 045702 (2012)

    Article  ADS  Google Scholar 

  5. S. **, A. Sen, W. Guo, A.W. Sandvik, Phys. Rev. B 87, 144406 (2013)

    Article  ADS  Google Scholar 

  6. C.K. Thomas, D.A. Huse, A.A. Middleton, Phys. Rev. Lett. 107, 047203 (2011)

    Article  ADS  Google Scholar 

  7. S.J. Rubin, N. Xu, A.W. Sandvik, Phys. Rev. E 95, 052133 (2017)

    Article  ADS  Google Scholar 

  8. X. Yining, D.-X. Yao, Phys. Rev. B 97, 224419 (2018)

    Article  ADS  Google Scholar 

  9. F.P. Toldin, A. Pelissetto, E. Vicari, Phys. Rev. E 82, 021106 (2010)

    Article  ADS  Google Scholar 

  10. J. Houdayer, A.K. Hartmann, Phys. Rev. B 70, 014418 (2004)

    Article  ADS  Google Scholar 

  11. J. Villain, J. Phys. C 10, 1717 (1977)

    Article  ADS  Google Scholar 

  12. D. Hu, X. Lu, W. Zhang, H. Luo, S. Li, P. Wang, G. Chen, F. Han, S.R. Banjara, A. Sapkota, A. Kreyssig, A.I. Gold-man, Z. Yamani, C. Niedermayer, M. Skoulatos, R. Georgii, T. Keller, P. Wang, W. Yu, P. Dai, Phys. Rev. Lett. 114, 157002 (2015)

    Article  ADS  Google Scholar 

  13. S. Jiang, H. **ng, G. Xuan, C. Wang, Z. Ren, C. Feng, J. Dai, Z. Xu, G. Cao, J. Phys. Condens. Matter 21, 382203 (2009)

    Article  ADS  Google Scholar 

  14. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Science 220, 671 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  15. G.E. Santoro, R. Martonak, E. Tosatti, R. Car, Science 295, 2427 (2002)

    Article  ADS  Google Scholar 

  16. H. Park, H. Lee, J. Phys. Soc. Jpn. 91, 074001 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of Science through NRF-2021R1111A2057259. We acknowledge the hospitality at APCTP where part of this work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hunpyo Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H. Spin glass in the disordered J-J‘ Ising model: simulated annealing study. J. Korean Phys. Soc. 82, 77–80 (2023). https://doi.org/10.1007/s40042-022-00681-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00681-x

Keywords

Navigation