Log in

The Preparation of Nanoemulsion Formulation from Pelargonic Acid in Lignin Carrier and Its Application to Weeds

  • ORIGINAL CONTRIBUTION
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript

Abstract

Lignin-based carriers are a promising biodegradable platform for the delivery system. Lignin with a much smaller particle size had been utilized as the encapsulation matrix for the active ingredient from herbicide, pelargonic acid (PA). PA is a saturated fatty acid with nine carbons (C9:0) that occurs naturally in a variety of vegetables and fruits. The PA-lignin emulsion had successfully formulated with the optimum condition stirring speed of 5000 rpm for 5 min in pH 5, with a droplet size of about 100 nm. There was no noticeable separation for 14 days and the zeta potential value was confirmed in the stable range. The presence of lignin as a carrier of pelargonic acid was proven not to solely disrupt the pelargonic acid effect on killing weeds. The residue analysis also showed a decrease after seven days of treatment. This finding showed the green technology platform to substitute chemical-based herbicides, which have potential applications in agricultural fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available upon reasonable request from the corresponding author, [WKR].

References

  1. V. Sharad, Herbicides : history , classification and genetic manipulation of plants for herbicides: history, classification and genetic manipulation of plants for herbicide (2015). https://doi.org/10.1007/978-3-319-09132-7.

  2. C. Wesseling, B.V.W. De Joode, C. Ruepert, C. León, P. Monge, H. Hermosillo, L.J. Partanen, Paraquat in develo** countries. Int. J. Occup. Environ. Health. 7, 275–286 (2001). https://doi.org/10.1179/107735201800339209

    Article  Google Scholar 

  3. W. Wibawa, R. Mohamad, D. Omar, A.S. Juraimi, Less hazardous alternative herbicides to control weeds in immature oil palm. Weed Biol. Manag. 7, 242–247 (2007). https://doi.org/10.1111/j.1445-6664.2007.00263.x

    Article  Google Scholar 

  4. A.V. Barker, R.G. Prostak, Management of vegetation by alternative practices in fields and roadsides. Int. J. Agron. 2014, 12 (2014). https://doi.org/10.1155/2014/207828

    Article  Google Scholar 

  5. I. Travlos, E. Rapti, I. Gazoulis, P. Kanatas, A. Tataridas, I. Kakabouki, P. Papatylianou, The herbicidal potential of different pelargonic acid products and essential oils against several important weed species. Agronomy 10, 1–13 (2020). https://doi.org/10.3390/agronomy10111687

    Article  Google Scholar 

  6. S. Beckers, S. Peil, F.R. Wurm, Pesticide-loaded nanocarriers from lignin sulfonates—a promising tool for sustainable plant protection. ACS Sustain. Chem. Eng. 8, 18468–18475 (2020). https://doi.org/10.1021/acssuschemeng.0c05897

    Article  Google Scholar 

  7. M. Fern, Lignin-polyethylene glycol matrices and ethylcellulose to encapsulate highly soluble herbicides. J. Appl. Polym. Sci. (2018). https://doi.org/10.1002/app.41422

    Article  Google Scholar 

  8. Q. Tang, Y. Qian, D. Yang, X. Qiu, Y. Qin, Lignin-based nanoparticles : a review on their preparations and applications. Polymers (Basel). 12, 12–16 (2020). https://doi.org/10.3390/polym12112471

    Article  Google Scholar 

  9. M.H. Sipponen, H. Lange, C. Crestini, A. Henn, M. Österberg, Lignin for nano- and microscaled carrier systems: applications, trends, and challenges. Chemsuschem 12, 2039–2054 (2019). https://doi.org/10.1002/cssc.201900480

    Article  Google Scholar 

  10. R. Weiss, E. Ghitti, M. Sumetzberger-Hasinger, G.M. Guebitz, G.S. Nyanhongo, Lignin-based pesticide delivery system. ACS Omega 5, 4322–4329 (2020). https://doi.org/10.1021/acsomega.9b04275

    Article  Google Scholar 

  11. T.O. Machado, S.J. Beckers, J. Fischer, B. Mu, C. Sayer, K. Landfester, F.R. Wurm, P.H.H. De Arau, Bio-based lignin nanocarriers loaded with fungicides as a versatile platform for drug delivery in plants. Biomacromol 2020(21), 2755–2763 (2020). https://doi.org/10.1021/acs.biomac.0c00487

    Article  Google Scholar 

  12. M. Nazari, M. Amin, Preparation and characterization of water in sesame oil microemulsion by spontaneous method. J. Food Process. Eng. 1, 1–8 (2019). https://doi.org/10.1111/jfpe.13032

    Article  Google Scholar 

  13. E. Melro, A. Filipe, D. Sousa, A.J.M. Valente, A. Romano, F.E. Antunes, B. Medronho, Dissolution of kraft lignin in alkaline solutions. Int. J. Biol. Macromol. 148, 688–695 (2020). https://doi.org/10.1016/j.ijbiomac.2020.01.153

    Article  Google Scholar 

  14. N.H.M. Saari, L.S. Chua, Nano-based products in beverage industry, Elsevier Inc., 2019. https://doi.org/10.1016/B978-0-12-816677-2.00014-4.

  15. M. Muñoz, N. Torres-pag, R. Peiro, R. Guijarro, A.M. Sánchez-Moreiras, M. Verdeguer, Phytotoxic effects of three natural compounds: pelargonic acid, carvacrol, and cinnamic aldehyde, against problematic weeds in mediterranean crops. Agron. J. 20, 1 (2021). https://doi.org/10.3390/agronomy10060791

    Article  Google Scholar 

  16. G. Dev Kumar, K. Mis Solval, A. Mishra, D. Macarisin, Antimicrobial efficacy of pelargonic acid micelles against salmonella varies by surfactant, serotype and stress response. Sci. Rep. 10, 1–13 (2020). https://doi.org/10.1038/s41598-020-67223-y

    Article  Google Scholar 

  17. M. Pishnamazi, H.Y. Ismail, S. Shirazian, J. Iqbal, G.M. Walker, M.N. Collins, Application of lignin in controlled release: development of predictive model based on artificial neural network for API release. Cellulose 26, 6165–6178 (2019). https://doi.org/10.1007/s10570-019-02522-w

    Article  Google Scholar 

  18. M. Daaou, D. Bendedouch, Water pH and surfactant addition effects on the stability of an Algerian crude oil emulsion. J. Saudi Chem. Soc. 16, 333–337 (2012). https://doi.org/10.1016/j.jscs.2011.05.015

    Article  Google Scholar 

  19. S.P. Hariyatno, V. Paramita, R. Amalia, The effect of surfactant, time, and speed of stirring in the emulsification process of soybeaan oil in water. J. Vocat. Stud. Appl. Res. 3, 21–25 (2021). https://doi.org/10.14710/jvsar.v3i1.10918

    Article  Google Scholar 

  20. Z. Hussain, S. Sahudin, Preparation, characterization and colloidal stability of chitosan-tripolyphosphate nanoparticles: optimization of formulation and process parameters. Int. J. Pharm. Pharm. Sci. 8, 297–308 (2016)

    Google Scholar 

  21. C.N. Lunardi, A.J. Gomes, F.S. Rocha, J. De Tommaso, G.S. Patience, Experimental methods in chemical engineering: zeta potential. Can. J. Chem. Eng. 99, 627–639 (2021). https://doi.org/10.1002/cjce.23914

    Article  Google Scholar 

  22. G. Shulga, S. Livcha, B. Neiberte, A. Verovkins, S. Vitolina, E. Zhilinska, The effect of pH on the ability of different lignins to stabilize the oil-in-water emulsion. IOP Conf. Ser. Mater. Sci. Eng. 500, 1 (2019). https://doi.org/10.1088/1757-899X/500/1/012011

    Article  Google Scholar 

  23. C. Nie, G. Han, J. Ni, S. Guan, H. Du, Y. Zhang, H. Wang, Stability dynamic characteristic of oil-in-water emulsion from alkali-surfactant-polymer flooding. ACS Omega 6, 19058–19066 (2021). https://doi.org/10.1021/acsomega.1c02367

    Article  Google Scholar 

  24. C. Chung, A. Sher, P. Rousset, E.A. Decker, D.J. McClements, Formulation of food emulsions using natural emulsifiers: utilization of quillaja saponin and soy lecithin to fabricate liquid coffee whiteners. J. Food Eng. 209, 1–11 (2017). https://doi.org/10.1016/j.jfoodeng.2017.04.011

    Article  Google Scholar 

  25. B. Huang, C. Wang, W. Zhang, C. Fu, H. Liu, H. Wang, Study on the stability of produced water from alkali/surfactant/polymer flooding under the synergetic effect of quartz sand particles and oil displacement agents. Processes. 8, 1 (2020). https://doi.org/10.3390/pr8030315

    Article  Google Scholar 

  26. Charles Ross & Son Company, Improve Emulsion Stability Through Ultra-high Shear Mixing, pp. 1–2 (2012).

  27. R. Yulianingsih, S. Gohtani, The influence of stirring speed and type of oil on the performance of pregelatinized waxy rice starch emulsifier in stabilizing oil-in-water emulsions. J. Food Eng. 280, 109920 (2020). https://doi.org/10.1016/j.jfoodeng.2020.109920

    Article  Google Scholar 

  28. J. Feng, M. Roché, D. Vigolo, L.N. Arnaudov, S.D. Stoyanov, T.D. Gurkov, G.G. Tsutsumanova, H.A. Stone, Nanoemulsions obtained via bubble-bursting at a compound interface. Nat. Phys. 10, 606–612 (2014). https://doi.org/10.1038/nphys3003

    Article  Google Scholar 

  29. Z. Wei, Y. Yang, R. Yang, C. Wang, Alkaline lignin extracted from furfural residues for pH-responsive Pickering emulsions and their recyclable polymerization. Green Chem. 14, 3230–3236 (2012). https://doi.org/10.1039/c2gc36278c

    Article  Google Scholar 

  30. Z. Hanifah, T.A. Ismoyo, R.A. Nugrahani, N.H. Fithriyah, The effects of stirring time at high speed on particle size and dispersion of rice bran γ -oryzanol nanocream, in: 5th Int. Conf. Innov. Res. Sci. Technol. Cult., pp. 59–62 (2019).

  31. A. Gupta, H.B. Eral, T.A. Hatton, P.S. Doyle, Nanoemulsions : formation, properties and applications. R. Soc. Chem. (2016). https://doi.org/10.1039/C5SM02958A

    Article  Google Scholar 

  32. J. Yao, F. Lin, H.S. Kim, J. Park, The effect of oil viscosity on droplet generation rate and droplet size in a T-Junction microfluidic droplet generator. Micromachines. 10, 1 (2019). https://doi.org/10.3390/mi10120808

    Article  Google Scholar 

  33. R. Ciriminna, A. Fidalgo, L.M. Ilharco, M. Pagliaro, Herbicides based on pelargonic acid: Herbicides of the bioeconomy. Biofuels Bioprod. Biorefining. 13, 1476–1482 (2019). https://doi.org/10.1002/bbb.2046

    Article  Google Scholar 

  34. S. Lebecque, L. Lins, F.E. Dayan, M.L. Fauconnier, M. Deleu, Interactions between natural herbicides and lipid bilayers mimicking the plant plasma membrane, Front. Plant Sci. 10, 1–11 (2019). https://doi.org/10.3389/fpls.2019.00329

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the facilities, scientific and technical support from Advanced Characterization Laboratories Serpong, through E- Layanan Sains, National Research and Innovation Agency (BRIN).

Funding

The authors are grateful for the research funding obtained from the JASTIP-Net 2021 Project number: 3-14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witta Kartika Restu.

Ethics declarations

Competing Interest

The authors have disclosed no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Restu, W.K., Septiyanti, M., Triwulandari, E. et al. The Preparation of Nanoemulsion Formulation from Pelargonic Acid in Lignin Carrier and Its Application to Weeds. J. Inst. Eng. India Ser. E 104, 297–303 (2023). https://doi.org/10.1007/s40034-023-00272-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40034-023-00272-w

Keywords

Navigation