Log in

Micro Structural, Optical and Magnetic Properties of Co–SiO2 Nanocomposite Synthesized by Sol–Gel Technique

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

Co–SiO2 nano composite has been synthesized via sol–gel technique using dextrose [C6H12O6] as a reducer and tetraethyl orthosilicate [Si(OCH2CH3)4] as oxide forming agent, respectively. The dried gel has been subsequently calcined at different temperature (850 and 900 °C) for 30 min in an inert atmosphere by N2 purging. The synthesized materials have been characterized by X-ray diffraction, high resolution transmission microscope, Fourier transform infrared spectroscopy, UV–Vis spectroscopy, scanning electron microscope, field emission microscope, atomic force microscope and physical property measurement system. The crystallite sizes of the face centered cubic cobalt nano composite materials have been found to be in the range of 14–28 nm. The crystallite size of the material found to be increased at higher calcination temperature due to the grain growth. The surface morphology of the obtained material has been found to be agglomerated but spherical in nature. This agglomeration tendency could be attributed to magnetic interaction between particles, large surface area as well as high surface energy. The band gap value of the obtained material has been determined to be 1.92 eV. The saturation magnetization (Ms) and the coercivity (Hc) of the composite material were found to be 29.45 emu g−1and 23.2 Oe, respectively. This technique has thus been found to be a convenient and effective method to prepare pure metallic cobalt nanoparticles with uniform size and homogeneous distribution throughout the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.A. Somorjai, T. Feng, J.Y. Park, The nanoscience revolution: merging of colloid science, catalysis and nanaelectronics. Top. Catal. 47(1–2), 15–21 (2008)

    Google Scholar 

  2. R. Schloögl, S.B.A. Hamid, Nanocatalysis: mature science revisited or something really new? Angew. Chem. Int. Ed. 43(13), 1628–1637 (2004)

    Article  Google Scholar 

  3. S.H. Wu, D.H. Chen, Synthesis and characterization of nickel nanoparticles in ternary W/O microemulsions. J. Colloid Interface Sci. 259(2), 282–286 (2003)

    Article  Google Scholar 

  4. C.T. Black, C.B. Murray, R.L. Sandstrom, S.H. Sun, Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science 290(5494), 1131–1134 (2000)

    Article  Google Scholar 

  5. H.Q. Cao, Z. Xu, H. Sang, D. Sheng, C.Y. Tie, Template synthesis and magnetic behavior of an array of cobalt nanowires encapsulated in polyaniline nanotubues. Adv. Mater. 13(2), 121–123 (2001)

    Article  Google Scholar 

  6. J.P. Wilcoxon, B.L. Abrams, Synthesis, structure and properties of metal nanoclusters. Chem. Soc. Rev. 35, 1162–1194 (2006)

    Article  Google Scholar 

  7. K. Yakushiji, F. Ernult, H. Imamura, K. Yamane, S. Mitani, K. Takanashi, S. Takahashi, S. Maekawa, H. Fujimori, Enhanced spin accumulation and novel magnetotransport in nanoparticles. Nat. Mater. 4(1), 57–61 (2005)

    Article  Google Scholar 

  8. Y. Xu, M. Mahmood, Z.R. Li, E. Dervishi, S. Trigwell, V.P. Zharov, N. Ali, V. Saini, A.R. Biris, D. Lupu, D. Boldor, A.S. Biris, Cobalt nanoparticles coated with graphitic shells as localized radio frequency absorbers for cancer therapy. Nanotechnology 19(43), 435102 (2008)

    Article  Google Scholar 

  9. V.F. Puntes, K.M. Kirshnan, A.P. Alivisatos, Colloidal nanocrystal shape and size control: the case of cobalt, colloidal nanocrystal shape and size control: the case of cobalt. Science 291(5511), 2115–2117 (2001)

    Article  Google Scholar 

  10. M. Todorovic, S. Schultz, J. Wong, A. Scherer, Writing and reading of single magnetic domain per bit perpendicular patterned media. Appl. Phys. Lett. 74(17), 2516–2518 (1999)

    Article  Google Scholar 

  11. G. Reiss, A. Hutten, Magnetic nanoparticles: applications beyond data storage. Nat. Mater. 4(10), 725–726 (2005)

    Article  Google Scholar 

  12. X.H. Liu, W. Liu, W.J. Hu, S. Guo, X.K. Lv, W.B. Cui, X.G. Zhao, Z.D. Zhang, Giant reversible magnetocaloric effect in cobalt hydroxide nanoparticles. Appl. Phys. Lett. 93(20), 202502–202505 (2008)

    Article  Google Scholar 

  13. J. Kim, Y. Piao, T. Hyeon, Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev. 38, 372–390 (2009)

    Article  Google Scholar 

  14. D.L. Zhao, H.L. Zhang, X.W. Zeng, Q.S. **a, J.T. Tang, Inductive heat property of Fe3O4/polymer composite nanoparticles in an ac magnetic field for localized hyperthermia. Biomed. Mater. 1(4), 198–201 (2006)

    Article  Google Scholar 

  15. R. Qiu, D. Zhang, P. Wang, X.L. Zhang, Y.S. Kang, Tunable electrochemical preparation of cobalt micro/nanostructures and their morphology-dependent wettability property. Electrochim. Acta 58, 699–706 (2011)

    Article  Google Scholar 

  16. S. Hatamie, S.D. Dhole, J. Ding, S.N. Kale, Encapsulation of cobalt nanoparticles in cross-linked-polymer cages. J. Magn. Magn. Mater. 321(14), 2135–2138 (2009)

    Article  Google Scholar 

  17. Q. **e, Y.T. Qian, S.Y. Zhang, S.Q. Fu, W.C. Yu, A hydrothermal reduction route to single crystalline hexagonal cobalt nanowires. Eur. J. Inorg. Chem. 2006(12), 2454–2459 (2006)

    Article  Google Scholar 

  18. Y. Soumare, C. Garcia, T. Maurer, G. Chaboussant, F. Ott, F. Fievet, J.Y. Piquemal, G. Viau, Kinetically controlled synthesis of hexagonally close-packed cobalt nanorods with high magnetic coercivity. Adv. Funct. Mater. 19(12), 1971–1977 (2009)

    Article  Google Scholar 

  19. F. Dumestre, B. Chaudret, C. Amiens, M. Respaud, P. Fejes, P. Renaud, P. Zurcher, Unprecedented crystalline super-lattices of monodisperse cobalt nanorods. Angew. Chem. Int. Ed. 42(42), 5213–5216 (2003)

    Article  Google Scholar 

  20. R. Xu, T. **e, Y.G. Zhao, Y.D. Li, Single-crystal metal nanoplatelets: cobalt, nickel, copper, and silver. Cryst. Growth Des. 7(9), 1904–1911 (2007)

    Article  Google Scholar 

  21. J.G. Li, J.J. Huang, Y. Qin, F. Ma, Magnetic and microwave properties of cobalt nanoplatelets. Mater. Sci. Eng. B 138(3), 199–204 (2007)

    Article  Google Scholar 

  22. L. Guo, F. Liang, N. Wang, D.S. Kong, S.M. Wang, L. He, C.P. Chen, X.M. Meng, Z.Y. Wu, Preparation and characterization of ring-shaped Co nanomaterials. Chem. Mater. 20(16), 5163–5168 (2008)

    Article  Google Scholar 

  23. L. Guo, S. Yang, C. Chen, Uniform magnetic chains of hollow cobalt mesospheres from one-pot synthesis and their assembly in solution. Adv. Funct. Mater. 17(3), 425–430 (2007)

    Article  Google Scholar 

  24. Y. Bao, M. Beerman, A.B. Pakhomov, K.M. Krishnan, Controlled crystalline structure and surface stability of cobalt nanocrystals. J. Phys. Chem. B 109(15), 7220–7222 (2005)

    Article  Google Scholar 

  25. L. Liu Sha, X. Kai-huant, Preparation of nano-crystalline Co powder from CoCO3. J. Refract. Metals Hard Mater. 27(1), 61–65 (2009)

    Article  Google Scholar 

  26. R.U. Ribeiro, J.W.C. Liberatori, H. Winnishofer, J.M.C. Bueno, D. Zanchet, Colloidal Co nanoparticles supported on SiO2: synthesis, characterizationand catalytic properties for steam reforming of ethanol. Appl. Catal. B Environ. 91(3–4), 670–678 (2009)

    Article  Google Scholar 

  27. M. Rivera, C.H. Rios-Reyes, L.H. Mendoza-Huizar, Morphological and magnetic properties of cobalt nanoclusters electrodeposited onto HOPG. Appl. Surf. Sci. 255(5), 1754–1758 (2008)

    Article  Google Scholar 

  28. B. Tamami, S. Ghasemi, Modified cross linked polyacrylamide anchored Schiff base–cobalt complex: a novel nano-sized heterogeneous catalyst for selective oxidation of olefins and alkyl halides with hydrogen peroxide in aqueous media. Appl. Catal. A Gen. 393(1–2), 242–250 (2011)

    Article  Google Scholar 

  29. J. Yan, T. Wei, J. Feng, Z. Fan, L. Zhang, F. Wei, One step synthesis of nanoparticles of cobalt in a graphitic shell anchored on graphene sheets. Carbon 50(6), 2356–2358 (2012)

    Article  Google Scholar 

  30. L.P. Zhu, H.M. **ao, W.D. Zhang, Y. Yang, S.Y. Fu, Synthesis and characterization of novel three-dimensional metallic Co dendritic superstructures by a simple hydrothermal reduction route. Cryst. Growth Des. 8(4), 1113–1118 (2008)

    Article  Google Scholar 

  31. R. Torchio, C. Meneghini, S. Mobilio, G. Capellini, A.G. Prieto, J. Alonso, M.L. Fdez-Gubieda, V.T. Liveri, A. Longo, A.M. Ruggirello, T. Neisius, Microstructure and magnetic properties of colloidal cobalt nano-clusters. J. Magn. Magn. Mater. 322(21), 3565–3571 (2010)

    Article  Google Scholar 

  32. Y. Lu, X.M. Lu, B.T. Mayers, T. Herricks, Y.N. ** surfactants. J. Solid State Chem. 181(7), 1530–1538 (2008)

    Article  Google Scholar 

  33. G. Seong, S. Takami, T. Arita, K. Minami, D. Hojo, A.R. Yavari, T. Adschiri, Supercritical hydrothermal synthesis of metallic cobalt nanoparticles and its thermodynamic analysis. J. Supercrit. Fluids. 60, 113–120 (2011)

    Article  Google Scholar 

  34. H. Meng, F. Zhao, Z. Zhang, Preparation of cobalt nanoparticles by direct current arc plasma evaporation method. Int. J. Refract. Metals Hard Mater. 31, 224–229 (2012)

    Article  Google Scholar 

  35. H.-X. Wu, C.-X. Zhang, L. **, H. Yang, S.-P. Yang, Preparation and magnetic properties of cobalt nanoparticles with dendrimers as templates. Mater. Chem. Phys. 121(1–2), 342–348 (2010)

    Article  Google Scholar 

  36. S.S. Nair, V. Sunny, M.R. Anantharaman, Tuning of magnetic parameters in cobalt–polystyrene nanocomposites by reduction cycling. Mater. Res. Bull. 46(9), 1610–1614 (2011)

    Article  Google Scholar 

  37. A.J. Majewski, J. Wood, W. Bujalski, Nickele–silica core@shellcatalyst for methane reforming. Int. J. Hydrog. Energy 38(34), 14531–14541 (2013)

    Article  Google Scholar 

  38. N. Sahiner, H. Ozay, O. Ozay, N. Aktas, A soft hydrogel reactor for cobalt nanoparticle preparation and use in the reduction of nitrophenols. Appl. Catal. B Environ. 101(1–2), 137–143 (2010)

    Article  Google Scholar 

  39. X. Liu, R. Yi, Y. Wang, G. Qiu, N. Zhang, X. Li, Highly ordered snowflakelike metallic cobalt microcrystals. J. Phys. Chem. C 111(1), 163–167 (2007)

    Article  Google Scholar 

  40. Q. **e, Y.T. Qian, S.Y. Zhang, S.Q. Fu, W.C. Yu, A hydrothermal reduction route to single-crystalline hexagonal cobalt nanowires. Eur. J. Inorg. Chem. 2006(12), 2454–2459 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This Paper was presented at the "Indian Workshop and Symposium on Modelling, Experimentation and Simulation on Complex Systems (Mescos 2015)" Held at HIT, Haldia during August 5–7, 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinal Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, M., Mukherjee, S., Gayen, A. et al. Micro Structural, Optical and Magnetic Properties of Co–SiO2 Nanocomposite Synthesized by Sol–Gel Technique. J. Inst. Eng. India Ser. D 98, 91–99 (2017). https://doi.org/10.1007/s40033-016-0116-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-016-0116-x

Keywords

Navigation