Log in

A Review on Materials Application in Scaffold Design by Fused Deposition Method

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

The review article focuses on ABS-based scaffold design in fused deposition modeling (FDM) method. In tissue engineering TE, the scaffold serves as a supporting material that can be seeded with cells and/or other supplementary components, is created in vitro, and then used as an implant for damaged tissue regeneration. With regard to its mechanical characteristics and cell culture capabilities, additive manufacturing (AM) methodologies like 3-dimensional printing, stereolithography (SLA), fused deposition modeling (FDM), selective laser sintering (SLS), 3D-plotter, phase-change-jet printing, and (LDP)-low-temperature deposition can satisfactorily create such complicated and convoluted frameworks. The use of 3D printing in the healthcare profession has numerous benefits, such as the ability to personalize pharmaceutical devices, medications, and equipment, in addition to being cost efficient and improving efficiency. Customized prostheses, fixtures, and surgical instruments have a favorable influence by minimizing the time necessary for surgery and recuperation and enhancing clinical rates of success. Furthermore, in terms of boosting production, conventional production techniques like milling, casting, and machining generate objects far slower than 3D printing. Thus, this, in turn, helps in cutting down fabrication time. The bulk of studies on the use of biomaterials for 3D printing have been on biological applications. This research paper investigates how the FDM practice employs diverse biomaterials for biomedical reasons and how we can improve the porosity and mechanical qualities of the printed scaffold by combining FDM with different additional procedures (such CO2 gas foaming techniques).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. O. Abdulhameed, A. Al-Ahmari, W. Ameen, and S. H. Mian, “Additive manufacturing: Challenges, trends, and applications,” Adv. Mech. Eng., vol. 11, no. 2, 2019, doi: https://doi.org/10.1177/1687814018822880.

  2. R. B. Kristiawan, F. Imaduddin, D. Ariawan, Ubaidillah, and Z. Arifin, “A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters,” Open Eng., vol. 11, no. 1, pp. 639–649, 2021, doi: https://doi.org/10.1515/eng-2021-0063.

  3. E. Provaggi and D. M. Kalaskar, 3D printing families: Laser, powder, nozzle based techniques. Elsevier Ltd, 2017.

  4. A. M. E. Arefin, N. R. Khatri, N. Kulkarni, and P. F. Egan, “Polymer 3D printing review: Materials, process, and design strategies for medical applications,” Polymers (Basel)., vol. 13, no. 9, 2021, doi: https://doi.org/10.3390/polym13091499.

  5. L. Mertz, Dream it, design it, print it in 3-D: What can 3-D printing do for you? IEEE Pulse 4(6), 15–21 (2013). https://doi.org/10.1109/MPUL.2013.2279616

    Article  Google Scholar 

  6. J. Banks, Adding value in additive manufacturing: Researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse 4(6), 22–26 (2013). https://doi.org/10.1109/MPUL.2013.2279617

    Article  Google Scholar 

  7. G.H. Wu, S.H. Hsu, Review: Polymeric-based 3D printing for tissue engineering. J. Med. Biol. Eng. 35(3), 285–292 (2015). https://doi.org/10.1007/s40846-015-0038-3

    Article  Google Scholar 

  8. M. A. Velasco, C. A. Narváez-Tovar, and D. A. Garzón-Alvarado, “Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering,” Biomed Res. Int., vol. 2015, 2015, doi: https://doi.org/10.1155/2015/729076.

  9. I. J. Solomon, P. Sevvel, and J. Gunasekaran, “A review on the various processing parameters in FDM,” Mater. Today Proc., vol. 37, no. Part 2, pp. 509–514, 2020, doi: https://doi.org/10.1016/j.matpr.2020.05.484.

  10. B. Road, “a Review : Fused Deposition Modeling – a Rapid Prototy** Process,” Int. Res. J. Eng. Technol., vol. 4, no. 9, pp. 5–9, 2017, [Online]. Available: https://irjet.net/archives/V4/i9/IRJET-V4I989.pdf.

  11. P. K. Penumakala, J. Santo, and A. Thomas, “A critical review on the fused deposition modeling of thermoplastic polymer composites,” Compos. Part B Eng., vol. 201, no. July, p. 108336, 2020, doi: https://doi.org/10.1016/j.compositesb.2020.108336.

  12. J.S. Chohan, R. Singh, Pre and post processing techniques to improve surface characteristics of FDM parts: A state of art review and future applications. Rapid Prototyp. J. 23(3), 495–513 (2017). https://doi.org/10.1108/RPJ-05-2015-0059

    Article  Google Scholar 

  13. H. Krishna Prannoy Namala and T. Shankar Srinivas, “Design for Additive Manufacturing: A Case Study on Lattice Structure FDM Printing,” pp. 5–6.

  14. W. Liu, H. Song, Z. Wang, J. Wang, and C. Huang, “Improving mechanical performance of fused deposition modeling lattice structures by a snap-fitting method,” Mater. Des., vol. 181, p. 108065, 2019, doi: https://doi.org/10.1016/j.matdes.2019.108065.

  15. H. I. Medellin-Castillo and J. Zaragoza-Siqueiros, “Design and Manufacturing Strategies for Fused Deposition Modelling in Additive Manufacturing: A Review,” Chinese J. Mech. Eng. (English Ed., vol. 32, no. 1, 2019, doi: https://doi.org/10.1186/s10033-019-0368-0.

  16. C. Tang, J. Liu, Y. Yang, Y. Liu, S. Jiang, and W. Hao, “Effect of process parameters on mechanical properties of 3D printed PLA lattice structures,” Compos. Part C Open Access, vol. 3, no. September, 2020, doi: https://doi.org/10.1016/j.jcomc.2020.100076.

  17. M. Eryildiz, Effect of Build Orientation on Mechanical Behaviour and Build Time of FDM 3D-Printed PLA Parts: An Experimental Investigation. Eur. Mech. Sci. 5(3), 116–120 (2021). https://doi.org/10.26701/ems.881254

    Article  Google Scholar 

  18. A.W. Gebisa, H.G. Lemu, Investigating effects of Fused-deposition modeling (FDM) processing parameters on flexural properties of ULTEM 9085 using designed experiment. Materials (Basel) 11(4), 1–23 (2018). https://doi.org/10.3390/ma11040500

    Article  Google Scholar 

  19. E.H.P. Pathade, P.C. Kulkarni, A. Professor, A Parametric Study of Additive Manufacturing Process. Int. Adv. Res. J. Sci. 3(1), 240–245 (2016). https://doi.org/10.17148/IARJSET/ICAME.46

    Article  Google Scholar 

  20. F. Rayegani, G.C. Onwubolu, Fused deposition modelling (fdm) process parameter prediction and optimization using group method for data handling (gmdh) and differential evolution (de). Int. J. Adv. Manuf. Technol. 73(1–4), 509–519 (2014). https://doi.org/10.1007/s00170-014-5835-2

    Article  Google Scholar 

  21. B. Yin, Q. He, L. Ye, Effects of deposition speed and extrusion temperature on fusion between filaments in single-layer polymer films printed with FFF. Adv. Ind. Eng. Polym. Res. 4(4), 270–276 (2021). https://doi.org/10.1016/j.aiepr.2021.07.002

    Article  Google Scholar 

  22. V. Kovan, G. Altan, and E. S. Topal, “Effect of layer thickness and print orientation on strength of 3D printed and adhesively bonded single lap joints Effect of layer thickness and print orientation on strength of 3D printed and adhesively bonded single lap joints †,” no. August 2019, 2017, doi: https://doi.org/10.1007/s12206-017-0415-7.

  23. Ł Miazio, Impact of Print Speed on Strength of Samples Printed in FDM Technology. Agric. Eng. 23(2), 33–38 (2019). https://doi.org/10.1515/agriceng-2019-0014

    Article  Google Scholar 

  24. S. H. Masood, Advances in Fused Deposition Modeling, vol. 10. Elsevier, 2014.

  25. S. Gupta and A. Bit, Rapid prototy** for polymeric gels. Elsevier Ltd, 2018.

  26. I. Khan, A.A. Shaikh, A Review of FDM Based Parts to Act as Rapid Tooling. Int. J. Mod. Eng. Res. 4, 59–65 (2014)

    Google Scholar 

  27. L. De Materiais, P. Lapol, P. E. E. Ufrgs, and P. Alegre, “performance,” Rev. Mater., vol. 1517–7076, no. artigios e-12826, 2020, 2020.

  28. A. Pandzic, D. Hodzic, A. Milovanovic, Effect of infill type and density on tensile properties of pla material for fdm process. Ann. DAAAM Proc. Int. DAAAM Symp. 30(1), 545–554 (2019). https://doi.org/10.2507/30th.daaam.proceedings.074

    Article  Google Scholar 

  29. S. W. Ahmed et al., “On the effects of process parameters and optimization of interlaminate bond strength in 3D printed ABS/CF-PLA composite,” Polymers (Basel)., vol. 12, no. 9, 2020, doi: https://doi.org/10.3390/POLYM12092155.

  30. K. G. J. Christiyan, U. Chandrasekhar, and K. Venkateswarlu, “A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite,” IOP Conf. Ser. Mater. Sci. Eng., vol. 114, no. 1, 2016, doi: https://doi.org/10.1088/1757-899X/114/1/012109.

  31. A. Lagoda, R. Gabor, Strength parameters of the ABS materials used in 3D printing. AIP Conf. Proc. 2029(October), 2018 (2018). https://doi.org/10.1063/1.5066498

    Article  Google Scholar 

  32. M. K. A. Mohd Ariffin, N. A. Sukindar, B. T. Hang Tuah Bin Baharudin, C. N. A. B. Jaafar, and M. I. S. Bin Ismail, “The effect of process parameters in extruding scaffold design using synthetic biomaterials,” Int. J. Mod. Manuf. Technol., vol. 11, no. 3 Special Issue, pp. 9–20, 2019.

  33. E. Carlier et al., Investigation of the parameters used in fused deposition modeling of poly(lactic acid) to optimize 3D printing sessions. Int. J. Pharm. 565(February), 367–377 (2019). https://doi.org/10.1016/j.ijpharm.2019.05.008

    Article  Google Scholar 

  34. M.R. Khosravani, T. Reinicke, Effects of raster layup and printing speed on strength of 3D-printed structural components. Procedia Struct. Integr. 28, 720–725 (2020). https://doi.org/10.1016/j.prostr.2020.10.083

    Article  Google Scholar 

  35. Y. Lyu, H. Zhao, X. Wen, L. Lin, A.K. Schlarb, X. Shi, Optimization of 3D printing parameters for high-performance biodegradable materials. J. Appl. Polym. Sci. 138(32), 1–13 (2021). https://doi.org/10.1002/app.50782

    Article  Google Scholar 

  36. S.A. Deomore, S.J. Raykar, Multi-criteria decision making paradigm for selection of best printing parameters of fused deposition modeling. Mater. Today Proc. 44, 2562–2565 (2021). https://doi.org/10.1016/j.matpr.2020.12.632

    Article  Google Scholar 

  37. M. Samykano, Mechanical Property and Prediction Model for FDM-3D Printed Polylactic Acid (PLA). Arab. J. Sci. Eng. 46(8), 7875–7892 (2021). https://doi.org/10.1007/s13369-021-05617-4

    Article  Google Scholar 

  38. M. Hikmat, S. Rostam, and Y. M. Ahmed, “Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology,” Results Eng., vol. 11, p. 100264, 2021, doi: https://doi.org/10.1016/j.rineng.2021.100264.

  39. P. Karimipour-Fard, M. P. Jeffrey, H. JonesTaggart, R. Pop-Iliev, and G. Rizvi, “Development, processing and characterization of Polycaprolactone/Nano-Hydroxyapatite/Chitin-Nano-Whisker nanocomposite filaments for additive manufacturing of bone tissue scaffolds,” J. Mech. Behav. Biomed. Mater., vol. 120, no. May, p. 104583, 2021, doi: https://doi.org/10.1016/j.jmbbm.2021.104583.

  40. G.P. Ariadna, R. Marc, P. Teresa, C. Joaquim, Optimization of Poli(ϵ-caprolactone) Scaffolds Suitable for 3D Cancer Cell Culture. Procedia CIRP 49, 61–66 (2016). https://doi.org/10.1016/j.procir.2015.07.031

    Article  Google Scholar 

  41. R. Sharma, S. Singhal, and B. K. Madhesia, “Biomaterials and 3D printing for sustainable applications,” vol. 8, no. 5, pp. 14–20, 2021.

  42. S. Kumar Vishwakarma, P. Pandey, N. K. Gupta, and U. Student, “Characterization of ABS Material: A Review,” Quest Journals J. Res. Mech. Eng., vol. 3, no. September, pp. 2321–8185, 2017, [Online]. Available: www.questjournals.org.

  43. A. Jandyal, I. Chaturvedi, I. Wazir, A. Raina, and M. I. Ul Haq, “3D printing – A review of processes, materials and applications in industry 4.0,” Sustain. Oper. Comput., vol. 3, no. September 2021, pp. 33–42, 2022, doi: https://doi.org/10.1016/j.susoc.2021.09.004.

  44. F. D. M. T. Filament, “Antero 800NA FDM Thermoplastic Filament Contents :”

  45. E. F. D. M. T. Filament, “ABS-ESD7 Contents :,” Strat. Rep., pp. 1–9, 2022.

  46. V. Tambrallimath, R. Keshavamurthy, D. Saravanbavan, G. S. P. Kumar, and M. H. Kumar, “Synthesis and characterization of graphene filled PC-ABS filament for FDM applications,” AIP Conf. Proc., vol. 2057, no. January, 2019, doi: https://doi.org/10.1063/1.5085610.

  47. J.A.M. Cunha et al., Evaluation of PC-ISO for customized, 3D printed, gynecologic 192Ir HDR brachytherapy applicators. J. Appl. Clin. Med. Phys. 16(1), 246–253 (2015). https://doi.org/10.1120/jacmp.v16i1.5168

    Article  Google Scholar 

  48. G. Cicala et al., “Comparison of Ultem 9085 used in fused deposition modelling (FDM) with polytherimide blends,” Materials (Basel)., vol. 11, no. 2, 2018, doi: https://doi.org/10.3390/ma11020285.

  49. I. Zein, D.W. Hutmacher, K.C. Tan, S.H. Teoh, Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4), 1169–1185 (2002). https://doi.org/10.1016/S0142-9612(01)00232-0

    Article  Google Scholar 

  50. A. Khalyfa et al., Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J. Mater. Sci. Mater. Med. 18(5), 909–916 (2007). https://doi.org/10.1007/s10856-006-0073-2

    Article  Google Scholar 

  51. M. Cornelsen et al., Mechanical and biological effects of infiltration with biopolymers on 3D printed tricalciumphosphate scaffolds. Dent. Mater. J. 36(5), 553–559 (2017). https://doi.org/10.4012/dmj.2016-306

    Article  Google Scholar 

  52. G. Jani, A. Johnson, J. Marques, and A. Franco, “Three-dimensional(3D) printing in forensic science–An emerging technology in India,” Ann. 3D Print. Med., vol. 1, p. 100006, 2021, doi: https://doi.org/10.1016/j.stlm.2021.100006.

  53. W. Jo, O.C. Kwon, M.W. Moon, Investigation of influence of heat treatment on mechanical strength of FDM printed 3D objects. Rapid Prototyp. J. 24(3), 637–644 (2018). https://doi.org/10.1108/RPJ-06-2017-0131

    Article  Google Scholar 

  54. S.R. Rajpurohit, H.K. Dave, Effect of process parameters on tensile strength of FDM printed PLA part. Rapid Prototyp. J. 24(8), 1317–1324 (2018). https://doi.org/10.1108/RPJ-06-2017-0134

    Article  Google Scholar 

  55. A. Alafaghani, A. Qattawi, B. Alrawi, A. Guzman, Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach. Procedia Manuf. 10, 791–803 (2017). https://doi.org/10.1016/j.promfg.2017.07.079

    Article  Google Scholar 

  56. M.F. Afrose, S.H. Masood, P. Iovenitti, M. Nikzad, I. Sbarski, Effects of part build orientations on fatigue behaviour of FDM-processed PLA material. Prog. Addit. Manuf. 1(1–2), 21–28 (2016). https://doi.org/10.1007/s40964-015-0002-3

    Article  Google Scholar 

  57. Y. Tao, H. Wang, Z. Li, P. Li, S.Q. Shi, Development and application of wood flour-filled polylactic acid composite filament for 3d printing. Materials (Basel) 10(4), 1–6 (2017). https://doi.org/10.3390/ma10040339

    Article  Google Scholar 

  58. M. Kariz, M. Sernek, M. Obućina, M.K. Kuzman, Effect of wood content in FDM filament on properties of 3D printed parts. Mater. Today Commun. 14, 135–140 (2018). https://doi.org/10.1016/j.mtcomm.2017.12.016

    Article  Google Scholar 

  59. N. Ayrilmis, Effect of layer thickness on surface properties of 3D printed materials produced from wood flour/PLA filament. Polym. Test. 71(July), 163–166 (2018). https://doi.org/10.1016/j.polymertesting.2018.09.009

    Article  Google Scholar 

  60. W. Xu et al., Novel biorenewable composite of wood polysaccharide and polylactic acid for three dimensional printing. Carbohydr. Polym. 187(January), 51–58 (2018). https://doi.org/10.1016/j.carbpol.2018.01.069

    Article  Google Scholar 

  61. P. Sreekala, M. Suresh, and S. Lakshmi Priyadarsini, “3D organ printing: Review on operational challenges and constraints,” Mater. Today Proc., vol. 33, no. xxxx, pp. 4703–4707, 2020, doi: https://doi.org/10.1016/j.matpr.2020.08.349.

  62. B.E. DiGregorio, Biobased Performance Bioplastic: Mirel. Chem. Biol. 16(1), 1–2 (2009). https://doi.org/10.1016/j.chembiol.2009.01.001

    Article  Google Scholar 

  63. J. Gonzalez Ausejo et al., “Three-dimensional printing of PLA and PLA/PHA dumbbell-shaped specimens of crisscross and transverse patterns as promising materials in emerging application areas: Prediction study,” Polym. Degrad. Stab., vol. 156, pp. 100–110, 2018, doi: https://doi.org/10.1016/j.polymdegradstab.2018.08.008.

  64. K.W. Meereboer, M. Misra, A.K. Mohanty, Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem. 22(17), 5519–5558 (2020). https://doi.org/10.1039/d0gc01647k

    Article  Google Scholar 

  65. M.A. Gunning, L.M. Geever, J.A. Killion, J.G. Lyons, C.L. Higginbotham, Mechanical and biodegradation performance of short natural fibre polyhydroxybutyrate composites. Polym. Test. 32(8), 1603–1611 (2013). https://doi.org/10.1016/j.polymertesting.2013.10.011

    Article  Google Scholar 

  66. A.A. Vaidya, C. Collet, M. Gaugler, G. Lloyd-Jones, Integrating softwood biorefinery lignin into polyhydroxybutyrate composites and application in 3D printing. Mater. Today Commun. 19(February), 286–296 (2019). https://doi.org/10.1016/j.mtcomm.2019.02.008

    Article  Google Scholar 

  67. A. N. Frone et al., “Nanomaterials-10–00051-V3.Pdf.”

  68. J. Tian, R. Zhang, J. Yang, W. Chou, P. Xue, and Y. Ding, “Additive manufacturing of wood flour/pha composites using micro-screw extrusion: Effect of device and process parameters on performance,” Polymers (Basel)., vol. 13, no. 7, 2021, doi: https://doi.org/10.3390/polym13071107.

  69. Amrita, A. Manoj, and R. C. Panda, “Biodegradable Filament for Three-Dimensional Printing Process: A Review,” Eng. Sci., vol. 18, pp. 11–19, 2022, doi: https://doi.org/10.30919/es8d616.

  70. C.S. Wu, H.T. Liao, Interface design of environmentally friendly carbon nanotube-filled polyester composites: Fabrication, characterisation, functionality and application. Express Polym. Lett. 11(3), 187–198 (2017). https://doi.org/10.3144/expresspolymlett.2017.20

    Article  Google Scholar 

  71. R.D. Rusk, Science. Educ. Forum 15(1), 119–120 (1950). https://doi.org/10.1080/00131725009342110

    Article  Google Scholar 

  72. X. Feng, Z. Yang, S.S.H. Rostom, M. Dadmun, Y. **e, S. Wang, Structural, mechanical, and thermal properties of 3D printed L-CNC/acrylonitrile butadiene styrene nanocomposites. J. Appl. Polym. Sci. 134(31), 1–8 (2017). https://doi.org/10.1002/app.45082

    Article  Google Scholar 

  73. M.A. Osman, M.R.A. Atia, Investigation of ABS-rice straw composite feedstock filament for FDM. Rapid Prototyp. J. 24(6), 1067–1075 (2018). https://doi.org/10.1108/RPJ-11-2017-0242

    Article  Google Scholar 

  74. N.A. Nguyen, C.C. Bowland, A.K. Naskar, A general method to improve 3D-printability and inter-layer adhesion in lignin-based composites. Appl. Mater. Today 12, 138–152 (2018). https://doi.org/10.1016/j.apmt.2018.03.009

    Article  Google Scholar 

  75. K. Akato, C.D. Tran, J. Chen, A.K. Naskar, Poly(ethylene oxide)-Assisted Macromolecular Self-Assembly of Lignin in ABS Matrix for Sustainable Composite Applications. ACS Sustain. Chem. Eng. 3(12), 3070–3076 (2015). https://doi.org/10.1021/acssuschemeng.5b00509

    Article  Google Scholar 

  76. C.C. Kuo et al., Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Compos. Part B Eng. 86, 36–39 (2016). https://doi.org/10.1016/j.compositesb.2015.10.005

    Article  Google Scholar 

  77. G. Syuhada, G. Ramahdita, A. J. Rahyussalim, and Y. Whulanza, “Multi-material poly(lactic acid) scaffold fabricated via fused deposition modeling and direct hydroxyapatite injection as spacers in laminoplasty,” AIP Conf. Proc., vol. 1933, 2018, doi: https://doi.org/10.1063/1.5023942.

  78. K. C. Ang, K. F. Leong, and C. K. Chua, “fabricated porous structures Investigation of the mechanical properties and porosity relationships in fused deposition modelling-fabricated porous structures,” 2006, doi: https://doi.org/10.1108/13552540610652447.

  79. P. Ravi, P.S. Shiakolas, A.D. Thorat, Analyzing the Effects of Temperature, Nozzle-Bed Distance, and Their Interactions on the Width of Fused Deposition Modeled Struts Using Statistical Techniques Toward Precision Scaffold Fabrication. J. Manuf. Sci. Eng. Trans. ASME 139(7), 1–9 (2017). https://doi.org/10.1115/1.4035963

    Article  Google Scholar 

  80. M. Dawoud, I. Taha, S.J. Ebeid, Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques. J. Manuf. Process. 21, 39–45 (2016). https://doi.org/10.1016/j.jmapro.2015.11.002

    Article  Google Scholar 

  81. C. Zhou et al., Combination of fused deposition modeling and gas foaming technique to fabricated hierarchical macro/microporous polymer scaffolds. Mater. Des. 109, 415–424 (2016). https://doi.org/10.1016/j.matdes.2016.07.094

    Article  Google Scholar 

  82. S.H. Masood, K. Alamara, Development of scaffold building units and assembly for tissue engineering using fused deposition modelling. Adv. Mater. Res. 83–86, 269–274 (2010). https://doi.org/10.4028/www.scientific.net/AMR.83-86.269

    Article  Google Scholar 

  83. A. Owida, R. Chen, S. Patel, Y. Morsi, X. Mo, Artery vessel fabrication using the combined fused deposition modeling and electrospinning techniques. Rapid Prototyp. J. 17(1), 37–44 (2011). https://doi.org/10.1108/13552541111098617

    Article  Google Scholar 

  84. S. Naghieh, E. Foroozmehr, M. Badrossamay, M. Kharaziha, Combinational processing of 3D printing and electrospinning of hierarchical poly(lactic acid)/gelatin-forsterite scaffolds as a biocomposite: Mechanical and biological assessment. Mater. Des. 133, 128–135 (2017). https://doi.org/10.1016/j.matdes.2017.07.051

    Article  Google Scholar 

  85. A. Kantaros, N. Chatzidai, D. Karalekas, 3D printing-assisted design of scaffold structures. Int. J. Adv. Manuf. Technol. 82(1–4), 559–571 (2016). https://doi.org/10.1007/s00170-015-7386-6

    Article  Google Scholar 

  86. K. P. U. N’deh et al., “Surface-modified industrial acrylonitrile butadiene styrene 3d scaffold fabrication by gold nanoparticle for drug screening,” Nanomaterials, vol. 10, no. 3, 2020, doi: https://doi.org/10.3390/nano10030529.

  87. D.H. Rosenzweig, E. Carelli, T. Steffen, P. Jarzem, L. Haglund, 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposustissue regeneration. Int. J. Mol. Sci. 16(7), 15118–15135 (2015). https://doi.org/10.3390/ijms160715118

    Article  Google Scholar 

  88. H.K. Dave et al., Compressive Strength of PLA based Scaffolds: Effect of layer height, Infill Density and Print Speed. Int. J. Mod. Manuf. Technol. 11(1), 21–27 (2019)

    Google Scholar 

  89. S. Sahmani, A. Khandan, S. Esmaeili, S. Saber-Samandari, M. Ghadiri Nejad, and M. M. Aghdam, “Calcium phosphate-PLA scaffolds fabricated by fused deposition modeling technique for bone tissue applications: Fabrication, characterization and simulation,” Ceram. Int., vol. 46, no. 2, pp. 2447–2456, 2020, doi: https://doi.org/10.1016/j.ceramint.2019.09.238.

  90. J. K. Arora and P. Bhati, “Fabrication and characterization of 3D printed PLA scaffolds,” AIP Conf. Proc., vol. 2205, no. January, 2020, doi: https://doi.org/10.1063/1.5142980.

  91. F. Castles et al., Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites. Sci. Rep. 6(March), 1–8 (2016). https://doi.org/10.1038/srep22714

    Article  Google Scholar 

  92. S. Naghieh, M. R. K. Ravari, M. Badrossamay, E. Foroozmehr, and M. Kadkhodaei, “Finite element analysis for predicting the mechanical properties of bone scaffolds fabricated by fused deposition modeling (FDM),” Modares Mech. Eng. Proc. Adv. Mach. Mach. Tools Conf., vol. 15, no. 13, pp. 450–454, 2015.

  93. S. Hwang, E. I. Reyes, K. sik Moon, R. C. Rumpf, and N. S. Kim, “Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process,” J. Electron. Mater., vol. 44, no. 3, pp. 771–777, 2015, doi: https://doi.org/10.1007/s11664-014-3425-6.

  94. M. K. A. M. Ariffin, S. H. Fazel, M. I. S. Ismail, S. B. Mohamed, and Z. Wahid, “Mechanical properties of bone scaffold prototypes fabricated by 3D printer,” J. Eng. Sci. Technol., vol. 13, no. Special Issue on WRICET (2016), pp. 29–38, 2018.

  95. R. Hasan, N. A. Rosli, S. Mat, and M. R. Alkahari, “Failure Behaviour of 3D-Printed ABS Lattice Structure under Compression,” no. 3, pp. 3908–3912, 2020, doi: https://doi.org/10.35940/ijeat.C6441.029320.

  96. S.H. Ahn, M. Montero, D. Odell, S. Roundy, P.K. Wright, Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 8(4), 248–257 (2002). https://doi.org/10.1108/13552540210441166

    Article  Google Scholar 

  97. J. P. Thomas and J. E. Renaud, “Mechanical behavior of acrylonitrile butadiene styrene (ABS) fused deposition materials . Experimental investigation Âguez,” vol. 7, no. 3, pp. 148–158, 2006.

  98. B.M. Tymrak, M. Kreiger, J.M. Pearce, Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater. Des. 58, 242–246 (2014). https://doi.org/10.1016/j.matdes.2014.02.038

    Article  Google Scholar 

  99. J. Zhang, P. Wang, R.X. Gao, Modeling of layer-wise additive manufacturing for part quality prediction. Procedia Manuf. 16, 155–162 (2018). https://doi.org/10.1016/j.promfg.2018.10.165

    Article  Google Scholar 

  100. J.T. Cantrell et al., Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyp. J. 23(4), 811–824 (2017). https://doi.org/10.1108/RPJ-03-2016-0042

    Article  MathSciNet  Google Scholar 

  101. A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Experimental investigation and empirical modelling of FDM process for compressive strength improvement. J. Adv. Res. 3(1), 81–90 (2012). https://doi.org/10.1016/j.jare.2011.05.001

    Article  Google Scholar 

  102. G.C. Onwubolu, F. Rayegani, Characterization and Optimization of Mechanical Properties of ABS Parts Manufactured by the Fused Deposition Modelling Process. Int. J. Manuf. Eng. 2014, 1–13 (2014). https://doi.org/10.1155/2014/598531

    Article  Google Scholar 

Download references

Funding

The funding agencies in the public, commercial, and non-profit sectors did not provide a specific grant for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Imran Ansari.

Ethics declarations

Conflict of interest

The author declares that there are no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, A.I., Sheikh, N.A. A Review on Materials Application in Scaffold Design by Fused Deposition Method. J. Inst. Eng. India Ser. C 104, 1247–1265 (2023). https://doi.org/10.1007/s40032-023-00988-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-023-00988-z

Keywords

Navigation