Log in

An Effective Compensation Strategy for Dynamic Model based on Improved Kane Principle Formulation

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

In this paper, the derivation of partial velocity in analytic form is illustrated. Then, the relation between Euler–Lagrange formulation and Kane principle formulation is presented. However, it ignores the condition that resultant moment of active force acts on end-effector. Under this circumstance, Kane principle formulation is further extended. It only considers velocity parameters instead of inertia tensor. The planar redundant manipulator with 5 degrees of freedom is taken as a case to verify the correctness of improved Kane principle formulation. By comparing torques under different methods based on experiment, Euler–Lagrange formulation, and Kane principle formulation, results confirm the importance and the nonlinear form of compensation coefficient in the dynamic model. Additionally, based on improved Newton–Euler formulation and improved Euler–Lagrange formulation, approximated dynamic models reflect that the accuracy of improved Kane principle formulation. Finally, improved Kane principle formulation provides a new method of establishing approximated dynamic models, which can justify whether trajectories in Cartesian space and joint space are reasonable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Carbonari, Simplified approach for dynamics estimation of a minor mobility parallel robot. Mechatronics 30, 76–84 (2015)

    Article  Google Scholar 

  2. H.B. Choi, A. Konno, M. Uchiyama, Inverse dynamics analysis of a 4-d.o.f. parallel robot H4. Adv. Robot. 24(1–2), 159–177 (2010)

    Article  Google Scholar 

  3. J. Wu, J.S. Wang, L.P. Wang, T.M. Li, Dynamics and control of a planar 3-DOF parallel manipulator with actuation redundancy. Mech. Mach. Theory 44(4), 835–849 (2009)

    Article  Google Scholar 

  4. R.M.M. Orsino, T.A.H. Coelho, C.P. Pesce, Analytical mechanics approaches in the dynamic modelling of Delta mechanism. Robotica 33(4), 953–973 (2015)

    Article  Google Scholar 

  5. R. Vidoni, A. Gasparetto, M. Giovagnoni, Design and implementation of an ERLS-based 3-D dynamic formulation for flexible-link robots. Robot. Cim. Int. Manuf. 29(2), 273–282 (2013)

    Article  Google Scholar 

  6. O. Altuzarra, A. Zubizarreta, I. Cabanes, C. Pinto, Dynamics of a four degrees-of-freedom parallel manipulator with parallelogram joints. Mechatronics 19(8), 1269–1279 (2009)

    Article  Google Scholar 

  7. Y.G. Liu, Y.M. Li, Dynamics and model-based control for mobile modular manipulators. Robotica 23, 795–797 (2005)

    Article  Google Scholar 

  8. J. Bernal, R. Campa, I. Soto, Kinematics and dynamics modeling of the 6-3-PUS-type Hexapod parallel mechanism. J. Mech. Sci. Technol. 32(10), 4555–4570 (2018)

    Article  Google Scholar 

  9. R.P. Judd, D.R. Falkenburg, Dynamics of nonrigid articulated robot linkages. IEEE Trans. Autom. Control 30(5), 499–502 (1985)

    Article  MathSciNet  Google Scholar 

  10. X. Li, H.X. Sun, L.J. Liao, J.Z. Song, Establishing an improved Kane dynamic model for the 7-DOF reconfigurable modular robot. Math. Probl. Eng. 2017, 1–13 (2017)

    MathSciNet  MATH  Google Scholar 

  11. H.X. Wei, T.M. Wang, M. Liu, J.Y. **ao, Y.D. Li, Inverse dynamic modeling and analysis of a new caterpillar robotic mechanism by Kane’s method. Robotica 31, 493–501 (2013)

    Article  Google Scholar 

  12. C. Laura, L. Raffaele, New results on robot modeling and simulation. J. Dyn. Syst. Meas. Control 128(4), 811–819 (2006)

    Article  Google Scholar 

  13. V. Falkenhahn, T. Mahl, A. Hildebrandt, R. Neumann, O. Sawodny, Dynamic modeling of bellows-actuated continuum robots using the Euler–Lagrange formalism. IEEE Trans. Robot. 31(6), 1483–1496 (2015)

    Article  Google Scholar 

  14. P. Sanchez-Sanchez, M.A. Arteaga-Perez, Simplied methodology for obtaining the dynamic model of robot manipulators. Int. J. Adv. Robot. Syst. 9, 1–12 (2012)

    Article  Google Scholar 

  15. X. Li, X.F. Wang, J.H. Wang, A kind of Lagrange dynamic simplified modeling method for multi-DOF robot. J. Intell. Fuzzy Syst. 31(4), 2393–2401 (2016)

    Article  Google Scholar 

  16. C.F. Yang, J.W. Han, S.T. Zheng, O.O. Peter, Dynamic modeling and computational efficiency analysis for a spatial 6-DOF parallel motion system. Nonlinear Dyn. 67(2), 1007–1022 (2012)

    Article  MathSciNet  Google Scholar 

  17. C.A. Cheng, H.P. Huang, H.K. Hsu, W.Z. Lai, C.C. Cheng, Learning the inverse dynamics of robotic manipulators in structured reproducing kernel Hilbert space. IEEE Trans. Cybern. 46(7), 1691–1703 (2016)

    Article  Google Scholar 

  18. B. **ao, S. Yin, O. Kaynak, Tracking control of robotic manipulators with uncertain kinematics and dynamics. IEEE Trans. Ind. Electron. 63(10), 6439–6449 (2016)

    Article  Google Scholar 

  19. A.A. Carlos, R.C. Ricardo, P.G. Sergio, M.V. Javier, Effects of nonlinear friction compensation in the inertia wheel pendulum. J. Mech. Sci. Technol. 31(9), 4425–4433 (2017)

    Article  Google Scholar 

  20. J. Boisclair, P.L. Richard, T. Laliberte, C. Gosselin, Gravity compensation of robotic manipulators using cylindrical Halbach arrays. IEEE-ASME Trans. Mech. 22(1), 457–464 (2017)

    Article  Google Scholar 

  21. S. Kim, S. Kwon, Dynamic modeling of a two-wheeled inverted pendulum balancing mobile robot. Int. J. Control Autom. 13(4), 926–933 (2015)

    Article  Google Scholar 

  22. O. Rios, Method of influence coefficients for kinematic and dynamic modeling of robotic systems. IEEE Trans. Robot. 32(1), 236–245 (2016)

    Article  Google Scholar 

  23. L.C. Yu, K.Q. Wang, Z.G. Zhang, Q.H. Zhang, J.H. Zhang, Simulation-based multi-machine coordination for high-speed press line. J. Braz. Soc. Mech. Sci. Eng. 41(7), 1–10 (2019)

    Article  Google Scholar 

  24. L.C. Yu, K.Q. Wang, Q.H. Zhang, J.H. Zhang, Trajectory planning of a redundant planar manipulator based on joint classification and particle swarm optimization algorithm. Multibody Syst. Dyn. 50, 25–43 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luchuan Yu.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest. The author reads and approves the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L. An Effective Compensation Strategy for Dynamic Model based on Improved Kane Principle Formulation. J. Inst. Eng. India Ser. C 103, 589–596 (2022). https://doi.org/10.1007/s40032-022-00836-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-022-00836-6

Keywords

Navigation