Log in

Dynamics of Nonlinear Oscillators with Discontinuous Nonlinearities Subjected to Harmonic and Stochastic Excitations

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Dynamics of nonlinear oscillators with discontinuous nonlinearities subjected to harmonic and random excitations is investigated. Impact, dry friction and Hertzian type compliant contact nonlinearities are considered. Stochastic bifurcations like the P-bifurcation and D-bifurcation are discussed. P and D bifurcations are characterized respectively by the joint probability density functions (jpdf) of the response and the largest Lyapunov exponent. The jpdf is obtained by the solution of the corresponding Fokker–Planck equation by the finite element and path integral methods. The results are verified by Monte Carlo simulation methods. Adaptive time step integration procedure (ATSP) is adopted which accurately determines the point of discontinuity. A bisection method and a Brownian tree approach are used in this process and direct the solution along the correct Brownian path. Numerical results are also obtained using non-smooth coordinate transformations like the Zhuvarlev and Ivanov transformations converting the discontinuous systems to equivalent smooth systems and compared with the results of the ATSP. The Filippov convex transformation is used in the case of the dry friction nonlinearity in the integration near the discontinuity. The results are discussed with respect to some examples like the Duffing and Van der Pol oscillators with impact and dry friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50

Similar content being viewed by others

References

  1. Y.K. Lin, in Probabilistic Theory of Structural Dynamics (McGraw-Hill, New York, 1967)

    Google Scholar 

  2. N.C. Nigam, Introduction to Random Vibrations (The MIT press, Cambridge, 1983)

    Google Scholar 

  3. C. Proppe, H.J. Pradlwarter, G.I. Schuëller, Equivalent linearization and Monte Carlo simulation in stochastic dynamics. Probab. Eng. Mech. 18(1), 1–15 (2003)

    Article  Google Scholar 

  4. B. Brogliato, in Nonsmooth Mechanics: Models Dynamics and Control (Springer, Berlin, 2016)

    Book  MATH  Google Scholar 

  5. M. di Bernardo, A. Nordmark, G. Olivar, Discontinuity-induced bifurcations of equilibria in piecewise smooth and impacting dynamical systems. Physica D Nonlinear Phenomena 237, 119–136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. R.A. Ibrahim, Recent advances in vibro - impact dynamics and collision of ocean vessels. J. Sound Vib. 333, 5900–5916 (2014)

    Article  Google Scholar 

  7. S. Narayanan, P. Sekar, Periodic and chaotic responses of an sdf system with piecewise linear stiffness subjected to combined harmonic and flow induced excitations. J. Sound Vib. 184(2), 281–298 (1995)

    Article  MATH  Google Scholar 

  8. B. Santhosh, C. Padmanabhan, S. Narayanan, Numeric-analytic solutions of the smooth and discontinuous oscillator. Int. J. Mech. Sci. 84, 102–119 (2014)

    Article  Google Scholar 

  9. M. Wiercigroch, Modeling of dynamical systems with motion dependent discontinuities. Chaos Solitons Fractals 11, 2429–42 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Raghothama, S. Narayanan, Bifurcation and chaos of an articulated loading platform with piecewise non-linear stiffness using the incremental harmonic balance method. Ocean Eng. 27(10), 1087–1107 (2000)

    Article  Google Scholar 

  11. A. Raghothama, S. Narayanan, Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method. J. Sound Vib. 226(3), 469–492 (1999)

    Article  Google Scholar 

  12. S. Narayanan, K. Jayaraman, Chaotic vibration in a non-linear oscillator with coulomb dam**. J. Sound Vib. 146(1), 17–31 (1991)

    Article  Google Scholar 

  13. S. Narayanan, P. Kumar, Numerical solutions of Fokker–Planck equation of nonlinear systems subjected to random and harmonic excitations. Probab. Eng. Mech. 27(1), 35–46 (2012)

    Article  Google Scholar 

  14. P. Kumar, S. Narayanan, Chaos and bifurcation analysis of stochastically excited discontinuous nonlinear oscillators. Nonlinear Dyn. 102, 927–950 (2000)

    Article  Google Scholar 

  15. P. Piiroinen, Y. Kuznetsov, An event driven method to simulate Filippov systems with accurate computing of sliding motions. ACM Trans. Math. Softw. 34, 1–24 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. G.W. Luo, Y.D. Chu, Y.L. Zhang, J.G. Zhang, Double Neimark–Sacker bifurcation and torus bifurcation of a class of vibratory systems with symmetrical rigid stops. J. Sound Vib. 298(1–2), 154–179 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Kumar, S. Narayanan, S. Gupta, Bifurcation analysis of a stochastically excited vibro-impact Duffing-Van der Pol oscillator with bilateral rigid barriers. Int. J. Mech. Sci. 127, 103–117 (2017)

    Article  Google Scholar 

  18. S.W. Shaw, P.J. Holmes, A periodically forced impact oscillator with large dissipation. J. Appl. Mech. 50, 849–857 (1983)

    Article  MATH  Google Scholar 

  19. D.J. Wagg, S.R. Bishop, Chatter, sticking and chaotic impacting motion in a two degree of freedom impact oscillator. Int. J. Bifurc. Chaos 11(1), 57–71 (2001)

    Article  Google Scholar 

  20. G.L. Wen, Codimension-2 Hopf bifurcation of a two-degree-of-freedom vibro-impact system. J. Sound Vib. 242(3), 475–485 (2001)

    Article  Google Scholar 

  21. R.A. Ibrahim, in Vibro-Impact Dynamics Modeling, Map** and Applications (Springer, 2009)

    MATH  Google Scholar 

  22. V.N. Pilipchuk, in Nonlinear Dynamics: Between Linear and Impact Limits (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  23. V.F. Zhuravlev, A method for analyzing vibro-impact systems by means of special functions. Mech. Solids 11, 23–27 (1976)

    MathSciNet  Google Scholar 

  24. A.P. Ivanov, Impact oscillations: linear theory of stability and bifurcations. J. Sound Vib. 178(3), 361–378 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  25. M.F. Dimentberg, A.I. Menyailov, Response of a single mass vibro impact systems to white noise random excitation. J. Appl. Math. Mech. 59, 709–716 (1979)

    MATH  Google Scholar 

  26. M.F. Dimentberg, D.V. Iourtchenko, Random vibrations with impacts: areview. Nonlinear Dyn. 36(2–4), 229–254 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Feng, W. Xu, R. Wang, Stochastic responses of vibro-impact Duffing oscillator excited by additive Gaussian noise. J. Sound Vib. 309(3–5), 730–738 (2008)

    Article  Google Scholar 

  28. N.S.Namachchivaya, J.H. Park, Stochastic dynamics of impact oscillators. J. Appl. Mech. 72, 862–870 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. H.G. Davies, Random vibration of a beam impacting stops. J. Sound Vib. 68(4), 479–487 (1980)

    Article  MATH  Google Scholar 

  30. H. Rong, X. Wang, W. Xu, T. Fang, Resonant response of a non-linear vibro-impact system to combined deterministic harmonic and random excitations. Int. J. Nonlinear Mech. 45(5), 474–481 (2010)

    Article  Google Scholar 

  31. H.T. Zhu, Stochastic response of vibro-impact Duffing oscillators under external and parametric Gaussian white noises. J. Sound Vib. 333(3), 954–961 (2014)

    Article  Google Scholar 

  32. A.F. Filippov, in Differential Equations with Discontinuous Righthand Sides (Kluwer, 1988)

    Book  Google Scholar 

  33. P. Kumar, S. Narayanan, S. Gupta, Stochastic bifurcations in a vibro-impact Duffing-Van der Pol oscillator.Nonlinear Dyn. 85, 439–52 (2016)

    Article  MathSciNet  Google Scholar 

  34. V.N. Pilipchuk, Temporal transformations and visualization diagrams for nonsmooth periodic motions. Int. J. Bifurc. Chaos 15(06), 1879–1899 (2005)

    Article  MATH  Google Scholar 

  35. V.N. Pilipchuk, Closed-form solutions for oscillators with inelastic impacts. J. Sound Vib. 359, 154–167 (2015)

    Article  Google Scholar 

  36. V.N. Pilipchuk, Non-smooth spatial and temporal substitutions in impact dynamics, in Problems of Nonlinear Mechanics and Physics of Materials. Advanced Structured Materials, vol. 94, ed. by I. Andrianov, A. Manevich, Y.Mikhlin, O.Gendelman, pp. 119 – 140 (2019)

  37. V.N. Pilipchuk, R.A. Ibrahim, Dynamics of a two-pendulum model with impact interaction and an elastic support. Nonlinear Dyn. 21(03), 221–247 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. M.F. Dimentberg, O. Gaidai, A. Naess, Random vibrations with strongly inelastic impacts: response PDF by the path integration method. Int. J. Nonlinear Mech. 44, 791–796 (2009)

    Article  MATH  Google Scholar 

  39. K.Hunt, F. Crossley, Coefficient of restitution interpreted as dam** in vibroimpact. J. Appl. Mech. 7, 440–445 (1975)

    Article  Google Scholar 

  40. M. Wiercigroch, V.W.T., Experimental study of a symmetrical piecewise base-excited oscillator.J. Appl. Mech. 65(3), 657–663 (1998)

    Article  Google Scholar 

  41. H. Lok, M. Wiercigroch, Modelling discontinuities in mechanical systems by smooth functions, in Euromech-2nd European Nonlinear Oscillations Conference, Prague, ed. by L. In Pust, F. Peterka (Springer, Netherlands, 1996), pp. 121–124

    Google Scholar 

  42. Y. Gonthier, J. McPhee, C. Lange, J.C. Piedboeuf, A regularized contact model with asymmetric dam** and dwell-time dependent friction. Multibody Syst.Dyn. 11, 209–233 (2004)

    Article  MATH  Google Scholar 

  43. T. Lee, A. Wang, On the dynamics of intermittent-motion mechanisms, part 1: dynamic model and response. J. Mech. Transm. Autom. Des. 105, 534–540 (1983)

    Article  Google Scholar 

  44. **g, H.S., Sheu, K.C.: Exact stationary solutions of the random response of a single-degree-of-freedom vibro-impact system. J. Sound Vib. 141(3), 363 – 373 (1990)

    Article  MathSciNet  Google Scholar 

  45. M. Machado, P. Moreira, P. Flores, H. Lankarani, Compliant contact force models in multibody dynamics: evolution of the hertz contact theory. Mech. Mach. Theory 53, 99–121 (2012)

    Article  Google Scholar 

  46. S. Narayanan, P. Sekar, A frequency domain based numeric-analytical method for nonlinear dynamical systemss. J. Sound Vib. 211(3), 409–424 (1998)

    Article  Google Scholar 

  47. P. Kumar, S. Narayanan, S. Gupta, Dynamics of discontinuous nonlinear oscillators with compliant contacts subjected to combined harmonic and random loadings, in NODYCON-2021 (2021)

  48. M. Wiercigroch, Vibro-impact responses of capsule system with various friction models. Chaos Solitons Fractals 11, 2429–42 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. S.T. Wei, C. Pierre, Effects of dry friction dam** on the occurrence of localized forced vibration in nearly cyclic structures. J. Sound Vib. 129, 397–416 (1989)

    Article  Google Scholar 

  50. V.I. Utkin, in Sliding Modes in Control Optimization (Springer, Berlin, 1992)

    Book  MATH  Google Scholar 

  51. L. Dieci, L. Lopez, Fundamental matrix solutions of piecewise smooth differential systems. Math. Comput. Simul. 81, 932–953 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. L.F. Shampine, S. Thompson, Event location for ordinary differential equations. Comput. Math. Appl. 39, 43–54 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. M. Shinozuka, Monte Carlo solution of structural dynamics. Comput. Struct. 2(5–6), 855–874 (1972)

    Article  Google Scholar 

  54. M. Shinozuka, C.M. Jan, Digital simulation of random processes and its applications. J. Sound Vib. 25(1), 111–128 (1972)

    Article  Google Scholar 

  55. P.E. Kloeden, E. Platen, in Numerical Solution of Stochastic Differential Equation (Springer, Berlin, 1992)

    Book  MATH  Google Scholar 

  56. E. Wong, M. Zakai, On the relation between ordinary and stochastic differential equation. Int. J. Eng. Sci. 3, 213–229 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  57. H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  58. T.K. Caughey, F. Ma, The exact steady state solution of a class of non-linear stochastic systems. Int. J. Nonlinear Mech. 17, 137–142 (1983)

    Article  MATH  Google Scholar 

  59. M.F. Dimentberg, An exact solution to a certain non-linear random vibration problem. Int. J. Nonlinear Mech. 17, 231–236 (1982)

    Article  MATH  Google Scholar 

  60. Y.K. Lin, G.Q. Cai, On exact stationary solutions of equivalent non-linear stochastic systems. Int. J. Nonlinear Mech. 23, 315–325 (1988)

    Article  MATH  Google Scholar 

  61. G.I. Schuëller, A state of the art report on computational stochastic mechanics. Probab. Eng. Mech. 12(4), 197–321 (1997)

    Article  Google Scholar 

  62. R.G. Bhandari, R.E. Sherre, Random vibration in discrete nonlinear dynamic systems. J. Mech. Eng. Sci. 10, 168–174 (1968)

    Article  Google Scholar 

  63. R.S. Langley, A finite element method for the statistics of non-linear random vibration. J. Sound Vib. 101(1), 41–54 (1985)

    Article  MATH  Google Scholar 

  64. H.P. Langtangen, A general numerical solution method for Fokker–Planck equations with applications to structural reliability. Probab. Eng. Mech. 6(1), 33–48 (1991)

    Article  Google Scholar 

  65. L.A. Bergman, S.F. Wojtkiewicz, M. Grigoriu, Response of dynamical systems driven by additive Gaussian and Poisson white noises, in Computational Mechanics in Structural Engineering, ed by F.Y.C. Gu, (Elsevier Science Ltd, Oxford), pp. 71–83 (1999)

    Chapter  Google Scholar 

  66. S.L. Chung, W.T. Yuan, A finite-element method for analysis of a non-linear system under stochastic parametric and external excitation. Int. J. Nonlinear Mech. 31(2), 193–201 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  67. E.A. Johnson, S.F. Wojtkiewicz, L.A. Bergman, B.F. Spencer Jr., Finite element and finite difference solutions to the transient Fokker–Planck equation, in Proceedings of a Workshop: Nonlinear and Stochastic Beam Dynamics in Accelerators-A Challenge to Theoretical and Numerical Physics, ed. by A. Bazzani, J. Ellison, H. Mais, and G. Turchetti (Lüneburg, Germany, 1997)

  68. P. Kumar, S. Narayanan, Solution of Fokker–Planck equation by finite element and finite difference methods for nonlinear system. Sadhana 31(4), 455–473 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  69. A. Masud, L.A. Bergman, Application of multi-scale finite element methods to the solution of the Fokker–Planck equation. Comput. Methods Appl. Mech. Eng. 194(12–16), 1513–1526 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  70. A. Masud, L.A. Bergman, Solution of Fokker–Planck equation by finite element and finite difference methods for nonlinear system, in Proceedings of ICOSSAR (Rotterdam, 2005), pp. 1911–1916

  71. B.F.J. Spencer, L.A. Bergman, On the numerical solution of the Fokker–Planck equations for nonlinear stochastic systems. Nonlinear Dyn. 4, 357–372 (1993)

    Article  Google Scholar 

  72. S. Wojtkiewicz, L. Bergman, B. Spencer Jr., Numerical solution of some three-state random vibration problems, in Vibration of Nonlinear, Random, and Time-Varying Systems, ASME DE-84-1, pp. 939–947 (1995)

  73. S.F. Wojtkiewicz, L.A. Bergman, Numerical solution of high dimensional Fokker–Planck equations, in 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability (Notre Dame, USA, 2000)

  74. S.F. Wojtkiewicz, L.A. Bergman, B.F. Spencer, E.A. Johnson, Numerical solution of the four-dimensional nonstationary Fokker–Planck equation, in IUTAM Symposium on Nonlinearity and Stochastic Structural Dynamics, ed. by S. Narayanan, R.N. Iyengar (Springer, Netherlands, 2001), pp. 271–287

    Chapter  Google Scholar 

  75. S.F. Wojtkiewicz, L.A. Bergman, B.F. Spencer Jr., High fidelity numerical solutions of the Fokker–Planck equation, in Proceedings of the ICOSSAR 97, The Seventh International Conference on Structural Safety and Reliability (Kyoto, Japan, 1997), pp. 24–28

  76. P. Kumar, S. Narayanan, S. Gupta, Finite element solution of Fokker-Planck equation of nonlinear oscillators subjected to colored non-gaussian noise. Probab. Eng. Mech. 38, 143–155 (2014)

    Article  Google Scholar 

  77. U.V. Wagner, W.V. Wedig, On the calculation of stationary solutions of multi-dimensional Fokker-Planck equations by orthogonal functions. Nonlinear Dyn. 21, 289–306 (2000)

    Article  MATH  Google Scholar 

  78. G.K. Er, V.P. Iu, A new method for the probabilistic solutions of large-scale nonlinear stochastic dynamic systems, in Nonlinear Stochastic Dynamics and Control, IUTAM Book Series, pp. 25–34 (2011)

  79. M.F. Wehner, W.G. Wolfer, Numerical evaluation of path-integral solutions to Fokker–Planck equation. Phys. Rev. A 27(5), 2663–2670 (1983)

    Article  Google Scholar 

  80. A. Naess, J.M. Johnsen, Response statistics of nonlinear, compliant offshore structures by the path integral solution method. Probab. Eng. Mech. 8(2), 91–106 (1993)

    Article  Google Scholar 

  81. D.V. Iourtchenko, E. Mo, A. Naess, Response probability density functions of strongly non-linear systems by the path integration method. Int. J. Nonlinear Mech. 41(5), 693–705 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  82. A. Naess, V. Moe, Efficient path integration method for nonlinear dynamics system. Probab. Eng. Mech. 15, 221–231 (2000)

    Article  Google Scholar 

  83. A. Naess, Chaos and nonlinear stochastic dynamics. Probab. Eng. Mech. 15(1), 37–47 (2000)

    Article  Google Scholar 

  84. J.S. Yu, G.Q. Cai, Y.K. Lin, A new path integration procedure based on Gauss–Legendre scheme. Int. J. Nonlinear Mech. 32, 759–768 (1997)

    Article  MATH  Google Scholar 

  85. P. Kumar, S. Narayanan, Modified path integral solution of Fokker–Planck equation: response and bifurcation of nonlinear systems. ASME J. Comput. Nonlinear Dyn. 05, 0110004 (2010)

    Google Scholar 

  86. D.S. Zhang, G.W. Wei, D.J. Kouri, D.K. Hoffman, Numerical method for the nonlinear Fokker–Planck equation. Phys. Rev. E 56, 1197–1206 (1997)

    Article  Google Scholar 

  87. M.D. Paola, A. Sofi, Approximate solution of the Fokker-Planck–Kolmogorov equation. Probab. Eng. Mech. 17(4), 369–384 (2002)

    Article  Google Scholar 

  88. Y.K. Wen, Approximate method for non-linear random vibration. J. Eng. Mech. Div. 4, 389–401 (1975)

    Article  Google Scholar 

  89. V. Palleschi, F. Sarri, G. Marcozzi, M.R. Torquati, Numerical solution of the Fokker–Planck equation: a fast and accurate algorithm. Phys. Lett. A 146(7–8), 378–386 (1990)

    Article  MathSciNet  Google Scholar 

  90. J.B. Roberts, First-passage time for randomly excited non-linear oscillators. J. Sound Vib. 109(1), 33–50 (1986)

    Article  MATH  Google Scholar 

  91. F. Schmidt, C.H. Lamarque, Computation of the solutions of the Fokker–Planck equation for one and two DOF systems. Commun. Nonlinear Sci. Numer. Simul. 14(2), 529–542 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  92. J.C. Whitney, Finite difference methods for the Fokker-Planck equation. J. Comput. Phys. 6(3), 483–509 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  93. H.M. Chiu, C.S. Hsu, A cell map** method for nonlinear deterministic and stochastic systems, part I: the method of analysis. J. Appl. Mech. 53, 695–701 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  94. H.M. Chiu, C.S. Hsu, A cell map** method for nonlinear deterministic and stochastic systems, part II: examples of application. J. Appl. Mech. 53, 701–710 (1986)

    Article  MATH  Google Scholar 

  95. S.H. Crandall, K.L Chandiramani, R.G. Cook, Some first-passage problems in random vibration. J. Appl. Mech. 33(3), 532–538 (1966)

    Article  Google Scholar 

  96. J. Gaines, T. Lyons, Variable step size control in the numerical solution of stochastic differential equations. SIAM J. Appl. Math. 57, 1455–1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  97. P. Levy, in Monographie des Probabilites Gauthier-Villars (Paris, 1948)

  98. G. Duffing, in Erzwungene schwingungen bei veranderlicher eigen-frequenz (F. Vieweg und Sohn, Braunschweig, 1918)

    MATH  Google Scholar 

  99. J. Guckenheimer, P. Holmes, in Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, 1983)

    Book  MATH  Google Scholar 

  100. P. Kumar, S. Narayanan, S. Adhikari, M.I. Friswell, Fokker–Planck equation analysis of randomly excited nonlinear energy harvester. J. Sound Vib. 333(7), 2040–2053 (2014)

    Article  Google Scholar 

  101. M. Daqaq, Transduction of a bistable inductive generator driven by white exponentially correlated gaussian noise. J. Sound Vib. 330(15), 2254–2664 (2011)

    Google Scholar 

  102. L. Fronzoni, P. Grigolini, P. Hanggi, F. Moss, R. Mannella, P. McClintock, Bistable oscillator dynamics driven by nonwhite noise. Phys. Rev. A 33, 3320–3327 (1986)

    Article  Google Scholar 

  103. P. Kumar, S. Narayanan, S. Gupta, Dynamic parameters estimation and fault identification from random response of rolling element bearing in a rotor bearing system. in Gas Turbine India Conference on Compressors, Fans, and Pumps; Turbines; Heat Transfer; Structures and Dynamics, vol. 1 (2019)

  104. G. Litak, M. Friswell, S. Adhikari, Magnetopiezoelastic energy harvesting driven by random excitation. Appl. Phys. Lett. 99(15), 214103 (2010)

    Article  Google Scholar 

  105. P. Kumar, S. Narayanan, S. Gupta, Targeted energy transfer in stochastically excited system with nonlinear energy sink. Eur. J. Appl. Math. 1–18

  106. T. Sapsis, A.F. Vakakis, L.A. Bergman, Effect of stochasticity on targeted energy transfer from a linear medium to a strongly nonlinear attachment. Probab. Eng. Mech. 26, 119–133 (2011)

    Article  Google Scholar 

  107. O.V. Gendelman, Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators. Nonlinear Dyn. 25, 237–253 (2001)

    Article  MATH  Google Scholar 

  108. H. Risken, in The Fokker–Planck Equation: Methods of Solution and Applications (Springer, New York, 1989)

    Book  MATH  Google Scholar 

  109. Y.C. Fung, in An Introduction to the Theory of Aeroelasticity (Willey, New York, 1955)

    Google Scholar 

  110. D. Poirel, S. Price, Response probability structure of a structurally nonlinear fluttering airfoil in turbulent flow. Probab. Eng. Mech. 18(2), 185–202 (2003)

    Article  Google Scholar 

  111. N. Harnpornchai, H.J. Pradlwarter, G.I. Schuëller, Stochastic analysis of dynamical systems by phase-space-controlled Monte Carlo simulation. Comput. Methods Appl. Mech. Eng. 168(1–4), 273–283 (1999)

    Article  MATH  Google Scholar 

  112. H.J. Pradlwarter, G.I. Schuëller, Assessment of low probability events of dynamical systems by controlled Monte Carlo simulation. Probab. Eng. Mech. 14(3), 213–227 (1999)

    Article  Google Scholar 

  113. P. Kumar, S. Narayanan, Optimal energy harvesting from a stochastically excited nonlinear energy sink, in 25th International Congress of Theoretical and Applied Mechanics (2021)

  114. S. Ali, S. Adhikari, Energy harvesting dynamic vibration absorbers. J. Appl. Mech. 80, 1–9 (2013)

    Article  Google Scholar 

  115. A.B. Nordmark, Non-periodic motion cause by grazing incidence in an impact oscillator. J. Sound Vib. 145, 279–297 (1991)

    Article  Google Scholar 

  116. S.W. Shaw, P.J. Holmes, A periodically forced piecewise linear oscillator. J. Sound Vib. 90(1), 129–155 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  117. S.L.T.D. Souza, I.L. Caldas, Calculation of Lyapunov exponents in systems with impacts. Chaos Solitons Fractals 19(3), 569–579 (2004)

    Article  MATH  Google Scholar 

  118. R.F. Hoskins, in Delta Functions: Introduction to Generalised Functions (Woodhead Publishing, India, 2011).

    Book  MATH  Google Scholar 

  119. L. Schwartz, in Théorie des Distributions (Hermann, Paris, 1966)

    MATH  Google Scholar 

  120. R.D. Richtmyer, in Principles of Advanced Mathematical Physics (Springer, Berlin, 1985)

    MATH  Google Scholar 

  121. B. Brogliato, S.I. Niculescu, P. Orhant, On the control of finite-dimensional mechanical systems with unilateral constants. IEEE Trans. Autom. Control 146, 200–215 (1997)

    Article  MATH  Google Scholar 

  122. C. Glocker, in Set-Valued Force Laws, Dynamics of Non-Smooth Systems (Springer, Berlin, 2001)

    Book  MATH  Google Scholar 

  123. R.A. Ibrahim, Rceent advances in vibro-impact dynamics and collision of ocean vessels. J. Sound Vib. 333, 5900–5916 (2014)

    Article  Google Scholar 

  124. V.N. Pilipchuk, Non-smooth spatio-temporal coordinates in nonlinear dynamics. ar**v:1101.4597v1.pdf, pp. 1 – 36 (2013)

  125. A.P. Ivanov, Impact oscillations: linear theory of stability and bifurcations. J. Sound Vib. 178, 361–378 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  126. V.I. Oseledec, A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19, 197–231 (1968)

    MathSciNet  Google Scholar 

  127. W. Wedig, Dynamic stability of beams under axial forces-Lyapunov exponents for general fluctuating loads, in Proceedings Eurodyn’90, Conference on Structural Dynamics, vol. 1, ed. by W. Kr-ig, pp. 57–64 (1990)

  128. Y.A. Phillis, Entropy stability of continuous dynamic system. Int. J. Control 35, 323–340 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  129. H. Wolf, J.Kodvanj, S. Bjelovuić-Kopilović, Effect of smoothing piecewise-linear oscillators on their stability predictions. J. Sound Vib. 270, 917–932 (2004)

    Article  Google Scholar 

  130. P. Kumar, S. Narayanan, S. Gupta, Investigations on the bifurcation of a noisy Duffing-Van der Pol oscillator. Probab. Eng. Mech. 45, 70–86 (2016)

    Article  Google Scholar 

  131. J.P. Den Hartog, Forced vibrations with combined viscous and coulomb dam**. Lond. Edinb. Dublin Philos. Mag. J. Sci. 9(59), 801–817 (1930)

    Article  MATH  Google Scholar 

  132. Cao, Q., Wiercigroch, M., Pavlovskaia, E.E., Grebogi, C., Thompson, J.M.: Archetypal oscillator for smooth and discontinuous dynamics. Phys. Rev. E 74, 046218–22 (2006)

    Article  MathSciNet  Google Scholar 

  133. B. Santhosh, S. Narayanan, C. Padmanabhan, Discontinuity induced bifurcations in nonlinear systems. Procedia IUTAM 19, 219–227 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Narayanan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, S., Kumar, P. Dynamics of Nonlinear Oscillators with Discontinuous Nonlinearities Subjected to Harmonic and Stochastic Excitations. J. Inst. Eng. India Ser. C 102, 1321–1363 (2021). https://doi.org/10.1007/s40032-021-00745-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-021-00745-0

Keywords

Navigation