Log in

Abstract

Graphene and graphene oxide (GO) have allured the interest of global scientists from diverse disciplines to explore the material in terms of all possible development owing to its essence of exceptional properties like electronic properties, adjustable structural properties, optical and mechanical properties. There have been immense efforts involved in the progress of advancement of technological development and fundamental research from chemically modified graphene in the form of GO, possessing several functionalities which can be tuned to obtain required structural modifications either covalently or non-covalently. This review is a complete carriage of GO, providing brief summary of its synthesis, routes of functionalization and various applications. The review begins with the structure and physicochemical properties of graphene and GO, followed by a brief history of GO synthesis. Subsequently, it comprehends covalent and non-covalent functionalization with their further classifications. Finally, it elucidates practical examples of multifarious applications in the fields of electrocatalysts, carbocatalysts, photocatalysts, drug delivery, water splitting, and biosensors. The role of GO in the impediment of the current epidemic of SARS-Cov-2 disease is encompassed as well. We anticipate that this review will deliver fundamentals of graphene and GO chemistry, as well as recent smart applications, allowing us to overcome current challenges.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

APTES:

3-Aminopropyltriethoxysilane

GN:

Amine-functionalized nitrogen-doped reduced GO

AA:

Ascorbic acid

CL:

Chemiluminescence

CBZ:

Carbamazepine

COVID 19:

Coronavirus disease 2019

ssDNA:

Complementary DNA

DOX:

Doxorubicin

DPMNs:

Dissolvable polymeric microneedles

EDC:

1-Ethyl-3-(3-dimethyl aminopropyl)-carbodiimide

FE:

Faradaic efficiency

GO:

Graphene oxide

GNP:

Graphene nanoplatelets

GOD:

(GO)-glucose oxidase

GCE:

Glass carbon electrode

HOR:

Hydrazine oxidation reaction

HA:

Hyaluronic acid

IGA3:

Insulin aptamer

IL:

1-Hexyl 3-decahexyl imidazolium

KET:

Ketoprofen

L-Cy-rGO:

L-cysteine-based GO

LPFG:

Long-period fiber grafting

LOD:

Limit of detection

LSG:

Laser-scribbed graphene-based

MB:

Methylene blue

MN:

Microneedles

NGO:

NanoGO

N-rGO:

N-doped rGO

NHS:

N-hydroxysuccinimide

DMAP:

N, N-dimethyl aminopyridine

SiO2-GOAG:

Nanosilica grafted GO aerogel

OER:

Oxygen evolution reaction

P3HT:

Poly(3-hexyl thiophene)

Pc:

Phthalocyanine

PK:

Polyketone

PyS:

Pyrene-1-sulfonic acid sodium salt

PPCPs:

Personal care products

PDI:

Perylene-3,4,9,10-tetracarboxylic diimide bis-benzene sulfonic acid

AP-GO:

Primary amine functionalized GO

pGO:

PEG-functionalized nanoGO

POC:

Point-of-care diagnostic

RTPCR:

Real-time reverse transcription-polymerase chain reaction

SMZ:

Sulfamethoxazole

SNGODs:

S- and N- doped GO dots

NaBH4 :

Sodium borohydride

WVTR:

Water vapor transmission rate

References

  1. Castro Neto AH (2010) The carbon new age. Mater Today 13:12–17

    Article  Google Scholar 

  2. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  ADS  Google Scholar 

  3. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404

    Article  Google Scholar 

  4. Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723

    Article  Google Scholar 

  5. Loh KP, Bao Q, Ang PK, Yang J (2010) The chemistry of graphene. J Mater Chem 20:2277–2289

    Article  Google Scholar 

  6. Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204

    Article  ADS  Google Scholar 

  7. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  ADS  Google Scholar 

  8. Roy-Mayhew JD, Aksay IA (2014) Graphene materials and their use in dye-sensitized solar cells. Chem Rev 114:6323–6348

    Article  Google Scholar 

  9. Park M, Kim N, Lee J, Gu M, Kim BS (2021) Versatile graphene oxide nanosheets via covalent functionalization and their applications. Mater Chem Front 5:4424–4444

    Article  Google Scholar 

  10. Leng K, Zhang F, Zhang L, Zhang T, Wu Y, Lu Y, Huang Y, Chen Y (2013) Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Res 6:581–592

    Article  Google Scholar 

  11. Zhou W, Chen H, Yu Y, Wang D, Cui Z, DiSalvo FJ, Abruña HD (2013) Amylopectin wrapped graphene oxide/sulfur for improved cyclability of lithium-sulfur battery. ACS Nano 7:8801–8808

    Article  Google Scholar 

  12. Mao S (2018) Graphene field-effect transistor sensors. Graphene Bioelectronics. Elsevier, Amsterdam, pp 113–132

    Chapter  Google Scholar 

  13. Davies A, Audette P, Farrow B, Hassan F, Chen Z, Choi JY, Yu A (2011) Graphene-based flexible supercapacitors: pulse-electropolymerization of polypyrrole on free-standing graphene films. J Phys Chem C 115:17612–17620

    Article  Google Scholar 

  14. Tabish TA, Narayan RJ (2021) Mitochondria-targeted graphene for advanced cancer therapeutics. Acta Biomater 129:43–56

    Article  Google Scholar 

  15. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  Google Scholar 

  16. Liu Q, Shi J, Jiang G (2012) Application of graphene in analytical sample preparation. Trends Anal Chem 37:1–11

    Article  Google Scholar 

  17. Yu W, Sisi L, Haiyan Y, Jie L (2020) Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv 10:15328–15345

    Article  ADS  Google Scholar 

  18. Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43:291–312

    Article  Google Scholar 

  19. Georgakilas V, Tiwari JN, Kemp C, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116:5464–5519

    Article  Google Scholar 

  20. Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc A 149:249–259

    Article  Google Scholar 

  21. Staudenmaier L (1898) Verfahren zur darstellung der graphitsaure. Ber Dtsch Chem Ges 31:1481–1487

    Article  Google Scholar 

  22. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  23. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  Google Scholar 

  24. Shen J, Hu Y, Shi M, Lu X, Qin C, Li C, Ye M (2009) Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater 21:3514–3520

    Article  Google Scholar 

  25. Peng L, Xu Z, Liu Z, Wei Y, Sun H, Li Z, Zhao X, Gao C (2015) An iron-based green approach to 1-h production of single-layer graphene oxide. Nat Commun 6:5716. https://doi.org/10.1038/ncomms6716

    Article  ADS  Google Scholar 

  26. Chua CK, Sofer Z, Pumera M (2012) Graphite oxides: effects of permanganate and chlorate oxidants on the oxygen composition. Chem Eur J 18:13453–13459

    Article  Google Scholar 

  27. Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18:2740–2749

    Article  Google Scholar 

  28. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  Google Scholar 

  29. Ruess G, Vogt F (1948) Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 78:222–242

    Article  Google Scholar 

  30. Scholz W, Boehm HP (1969) Untersuchungen am Graphitoxid. VI. Betrachtungen zur Struktur des Graphitoxids. Z Anorg Allg Chem 369:327–340

    Article  Google Scholar 

  31. Nakajima T, Mabuchi A, Hagiwara R (1998) A new structure model of graphite oxide. Carbon 26:357–361

    Article  Google Scholar 

  32. Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482

    Article  Google Scholar 

  33. Aboutalebi SH, Gudarzi MM, Zheng QB, Kim JK (2011) Spontaneous formation of liquid crystals in ultra large graphene oxide dispersions. Adv Funct Mater 21:2978–2988

    Article  Google Scholar 

  34. ** M, He W, Wang C, Yu F, Yang W (2020) Covalent modification of graphene oxide and applications in polystyrene composites. React Funct Polym 146:104437

    Article  Google Scholar 

  35. Chua CK, Pumera M (2013) Covalent chemistry on graphene. Chem Soc Rev 42:3222–3233

    Article  Google Scholar 

  36. Yu D, Yang Y, Durstock M, Baek JB, Dai L (2010) Soluble P3HT-grafted graphene for efficient bilayer-heterojunction photovoltaic devices. ACS Nano 4:5633–5640

    Article  Google Scholar 

  37. Bao H, Pan Y, ** Y, Sahoo NG, Wu T, Li L, Li J, Gan LH (2011) Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small 7:1569–1578

    Article  Google Scholar 

  38. Su H, Wu S, Li Z, Huo Q, Guan J, Kan Q (2015) Co(II), Fe(III) or VO(II) Schiff base metal complexes immobilized on graphene oxide for styrene epoxidation. Appl Organomet Chem 29:462–467

    Article  Google Scholar 

  39. Collins WR, Lewandowski W, Schmois E, Walish J, Swager TM (2011) Claisen rearrangement of graphite oxide: a route to covalently functionalized graphenes. Angew Chem Int Ed 50:8848–8852

    Article  Google Scholar 

  40. Park J, Yan M (2013) Covalent functionalization of graphene with reactive intermediates. Acc Chem Res 46:181–189

    Article  Google Scholar 

  41. Georgakilas V, Bourlinos AB, Zboril R, Steriotis TA, Dallas P, Stubos AK, Trapalis C (2010) Organic functionalisation of graphenes. Chem Commun 46:1766–1768

    Article  Google Scholar 

  42. Lomeda JR, Doyle CD, Kosynkin DV, Hwang WF, Tour JM (2008) Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J Am Chem Soc 130:16201–16206

    Article  Google Scholar 

  43. Sun S, Cao Y, Feng J, Wu P (2010) Click chemistry as a route for the immobilization of well-defined polystyrene onto graphene sheets. J Mater Chem 20:5605–5607

    Article  Google Scholar 

  44. Jain R, Singh Y, Cho SY, Sasikala SP, Koo SH, Narayan R, Jung HT, Jung Y, Kim SO (2019) Ambient stabilization of few layer phosphorene via noncovalent functionalization with surfactants: systematic 2D NMR characterization in aqueous dispersion. Chem Mater 31:2786–2794

    Article  Google Scholar 

  45. Su Q, Pang S, Alijani V, Li C, Feng X, Müllen K (2009) Composites of graphene with large aromatic molecules. Adv Mater 21:3191–3195

    Article  Google Scholar 

  46. Mei L, Shi Y, Miao Z, Cao F, Hu K, Lin C, Li X, Li J, Gao J (2021) Photo-initiated enhanced antibacterial therapy using a non-covalent functionalized graphene oxide nanoplatform. Dalton Trans 50:8404–8412

    Article  Google Scholar 

  47. Cho J, Jeon I, Kim SY, Lim S, Jho JY (2017) Improving dispersion and barrier properties of polyketone/graphene nanoplatelet composites via noncovalent functionalization using aminopyrene. ACS Appl Mater Interfaces 9:27984–27994

    Article  Google Scholar 

  48. Wang L, Yu D, Dai R, Fu D, Li W, Guo Z, Cui C, Xu J, Shen S, Ma K (2019) PEGylated doxorubicin cloaked nano-graphene oxide for dual-responsive photochemical therapy. Inter J Pharm 557:66–73

    Article  Google Scholar 

  49. Lawal IA, Lawal MM, Akpotu SO, Okoro HK, Klink M, Ndungu P (2020) Noncovalent graphene oxide functionalized with ionic liquid: theoretical, isotherm, kinetics, and regeneration studies on the adsorption of pharmaceuticals. Ind Eng Chem Res 59:4945–4957

    Article  Google Scholar 

  50. Julkapli NM, Bagheri S (2015) Graphene supported heterogeneous catalysts: an overview. Inter J Hydrog Energy 40:948–979

    Article  Google Scholar 

  51. Rana S, Jonnalagadda SB (2017) Synthesis and characterization of amine functionalized graphene oxide and scope as catalyst for Knoevenagel condensation reaction. Catal Commun 92:31–34

    Article  Google Scholar 

  52. Zhang F, Jiang H, Li X, Wu X, Li H (2014) Amine-functionalized GO as an active and reusable acid-base bifunctional catalyst for one-pot cascade reactions. ACS Catal 4:394–401

    Article  Google Scholar 

  53. Zhang F, Jiang H, Wu X, Mao Z, Li H (2015) Organoamine-functionalized graphene oxide as a bifunctional carbocatalyst with remarkable acceleration in a one-pot multistep reaction. ACS Appl Mater Interfaces 7:1669–1677

    Article  Google Scholar 

  54. Patel D, Modi CK, Jha PK, Srivastava H, Kane SR (2021) ZnO Nanoparticles embedded on a reduced graphene oxide nanosheet (ZnO−NPs@r-GO) as a proficient heterogeneous catalyst for a one-pot A3-coupling reaction. Eur J Inorg Chem 2021:3578–3590

    Article  Google Scholar 

  55. Nguyen VC, Nimbalkar DB, Nam LD, Lee YL, Teng H (2021) Photocatalytic cellulose reforming for H2 and formate production by using graphene oxide-dot catalysts. ACS Catal 11:4955–4967

    Article  Google Scholar 

  56. Sher Shah MSA, Kim WJ, Park J, Rhee DK, Jang IH, Park NG, Lee JY, Yoo PJ (2014) Highly efficient and recyclable nanocomplexed photocatalysts of AgBr/N-doped and amine-functionalized reduced graphene oxide. ACS Appl Mater Interfaces 6:20819–20827

    Article  Google Scholar 

  57. Nenavathu BP, Kandula S, Verma S (2018) Visible-light-driven photocatalytic degradation of safranin-T dye using functionalized graphene oxide nanosheet (FGS)/ZnO nanocomposites. RSC Adv 8:19659–19667

    Article  ADS  Google Scholar 

  58. Sapner VS, Chavan PP, Munde AV, Sayyad US, Sathe BR (2021) Heteroatom (N, O, and S)-based biomolecule-functionalized Graphene oxide: a bifunctional electrocatalyst for enhancing hydrazine oxidation and oxygen reduction reactions. Energy Fuels 35:6823–6834

    Article  Google Scholar 

  59. **a L, Li B, Zhang Y, Zhang R, Ji L, Chen H, Cui G, Zheng H, Sun X, **e F, Liu Q (2019) Cr2O3 nanoparticle-reduced Graphene oxide hybrid: a highly active electrocatalyst for N2 reduction at ambient conditions. Inorg Chem 58:2257–2260

    Article  Google Scholar 

  60. Garino N, Zeng J, Castellino M, Sacco A, Risplendi F, Fiorentin MR, Bejtka K, Chiodoni A, Salomon D, Segura-Ruiz J, Pirri CF, Cicero G (2021) Facilely synthesized nitrogen-doped reduced GO functionalized with copper ions as electrocatalyst for oxygen reduction. npj 2D Mater Appl 5:2. https://doi.org/10.1038/s41699-020-00185-x

    Article  Google Scholar 

  61. Xu B, Huang J, Ding L, Cai J (2020) Graphene oxide-functionalized long period fiber grating for ultrafast label-free glucose biosensor. Mater Sci Eng C Mater Biol Appl 7:110329. https://doi.org/10.1016/j.msec.2019.110329

    Article  Google Scholar 

  62. Hashemi SA, Mousavi SM, Bahrani S, Ramakrishna S, Babapoor A, Chiang WH (2020) Coupled GO with hybrid metallic nanoparticles as potential electrochemical biosensors for precise detection of ascorbic acid within blood. Anal Chim Acta 1107:183–192

    Article  Google Scholar 

  63. Sun Y, Lin Y, Sun W, Han R, Luo C, Wang X, Wei Q (2019) A highly selective and sensitive detection of insulin with chemiluminescence biosensor based on aptamer and oligonucleotide-AuNPs functionalized nanosilica @ GO aerogel. Anal Chim Acta 1089:152–164

    Article  Google Scholar 

  64. Gu L, Zhang C, Guo Y, Gao J, Yu Y, Zhang B (2019) Enhancing electrocatalytic water splitting activities via photothermal effect over bifunctional nickel/reduced GO nanosheets. ACS Sustain Chem Eng 7:3710–3714

    Article  Google Scholar 

  65. Singh N, Jana S, Singh GP, Dey RK (2020) Graphene-supported TiO2: Study of promotion of charge carrier in photocatalytic water splitting and methylene blue dye degradation. Adv Compos Hybrid Mater 3:127–140

    Article  Google Scholar 

  66. Subramanyam P, Meena B, Sinha GN, Suryakala D, Subrahmanyam C (2021) Facile synthesis and photoelectrochemical performance of a Bi2S3@rGO nanocomposite photoanode for efficient water splitting. Energy Fuels 35:6315–6632

    Article  Google Scholar 

  67. Pramanik N, Ranganathan S, Rao S, Suneet K, Jain S, Rangarajan A, Jhunjhunwala S (2019) A composite of hyaluronic acid-modified GO and iron oxide nanoparticles for targeted drug delivery and magnetothermal therapy. ACS Omega 4:9284–9293

    Article  Google Scholar 

  68. Pei X, Zhu Z, Gan Z, Chen J, Zhang X, Cheng X, Wan Q, Wang J (2020) PEGylated nano-GO as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Sci Rep 10:2717. https://doi.org/10.1038/s41598-020-59624-w

    Article  ADS  Google Scholar 

  69. Chen Y, Yang Y, **an Y, Singh P, Feng J, Cui S, Carrier A, Oakes K, Luan T, Zhang X (2020) Multifunctional graphene-oxide-reinforced dissolvable polymeric microneedles for transdermal drug delivery. ACS Appl Mater Interfaces 12:352–360

    Article  Google Scholar 

  70. Fukuda M, Islam MS, Shimizu R, Nassar H, Rabin NN, Takahashi Y, Sekine Y, Lindoy LF, Fukuda T, Ikeda T, Hayami S (2021) Lethal interactions of SARS-CoV-2 with GO: implications for COVID-19 treatment. ACS Appl Nano Mater 4:11881–11887

    Article  Google Scholar 

  71. Nguyen NHL, Kim S, Lindemann G, Berry V (2021) COVID-19 Spike protein induced phononic modification in antibody-coupled graphene for viral detection application. ACS Nano 15:11743–11752

    Article  Google Scholar 

  72. Beduk T, Beduk D, Filho JIO, Zihnioglu F, Cicek C, Sertoz R, Arda B, Goksel T, Turhan K, Salama KN, Timur S (2021) Rapid point-of-care COVID-19 diagnosis with a gold-nanoarchitecture-assisted laser-scribed graphene biosensor. Anal Chem 93:8585–8594

    Article  Google Scholar 

Download references

Funding

The funding was provided by UGC-DAE Consortium for Scientific Research, University Grants Commission (Grant No. CSR-IC-ISUM-07/CRS-290/2019-20/1342 Dated- 5/03/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetan K. Modi.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trivedi, K.A., Lad, U.M. & Modi, C.K. Graphene and Graphene Oxide: A Long Race Horse. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 93, 525–542 (2023). https://doi.org/10.1007/s40010-023-00847-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-023-00847-7

Keywords

Navigation