Log in

Multi-level Threshold Switching and Crystallization Characteristics of Nitrogen Alloyed GaSb for Phase Change Memory Application

  • SCIENTIFIC RESEARCH PAPER
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

Multi-level switching memristor devices are becoming a need of the hour to implement the synaptic behaviour for brain-inspired in-memory computing. In that regard, out of all the available memory candidates, Phase Change Memory (PCM) is an attractive option as it is technologically mature, and its physical mechanism is well understood. However, the current generation of PCM materials suffers from stochasticity in their multi-level switching. In this communication, nitrogen alloyed GaSb (N-GaSb) material is proposed as a multi-level switching PCM material to redress stochasticity. Interestingly, N-GaSb exhibits well-defined three states, and it is found to reduce the threshold switching power of GaSb from 16 mW to 17.2 μW. The reason behind multi-level switching and the reduction in required power for threshold switching in N-GaSb has been revealed by synchrotron-based grazing-incidence X-ray diffraction and photoelectron spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sebastian A, Le Gallo M, Burr GW, Kim S, BrightSky M, Eleftheriou E (2018) Tutorial: brain-inspired computing using phase-change memory devices. J Appl Phys 124(11):111101

    Article  ADS  Google Scholar 

  2. Wuttig M, Yamada N (2007) Phase-change materials for rewriteable data storage. Nat Mater 6(11):824–832

    Article  ADS  Google Scholar 

  3. Loke D, Lee T, Wang W, Shi L, Zhao R, Yeo Y, Chong T, Elliott S (2012) Breaking the speed limits of phase-change memory. Science 336(6088):1566–1569

    Article  ADS  Google Scholar 

  4. Kim T, Lee S (2020) Evolution of phase-change memory for the storage-class memory and beyond. IEEE Trans Electron Dev 67(4):1394–1406

    Article  ADS  Google Scholar 

  5. Ielmini D (2008) Threshold switching mechanism by high-field energy gain in the hop** transport of chalcogenide glasses. Phys Rev B 78(3):035308

    Article  ADS  Google Scholar 

  6. Cheng H-Y, Raoux S, Nguyen KV, Shenoy RS, BrightSky M (2014) Ga46Sb54 material for fast switching and Pb-free soldering reflow process complying phase-change memory. ECS J Solid State Sci Technol 3(7):P263

    Article  Google Scholar 

  7. Kim Y, Baeck J, Cho M-H, Jeong E, Ko D-H (2006) Effects of N2+ ion implantation on phase transition in Ge2Sb2Te5 films. J Appl Phys 100(8):083502

    Article  ADS  Google Scholar 

  8. Shelby RM, Raoux S (2009) Crystallization dynamics of nitrogen-doped Ge2Sb2Te5. J Appl Phys 105(10):104902

    Article  ADS  Google Scholar 

  9. Lai Y, Qiao B, Feng J, Ling Y, Lai L, Lin Y, Tang T, Cai B, Chen B (2005) Nitrogen-doped Ge2Sb2Te5 films for nonvolatile memory. J Electron Mater 34(2):176–181

    Article  ADS  Google Scholar 

  10. Kim K-H, Park J-C, Lee J-H, Chung J-G, Heo S, Choi S-J (2010) Nitrogen-do** effect on Ge2Sb2Te5 chalcogenide alloy films during annealing. Jpn J Appl Phys 49(10R):101201

    Article  ADS  Google Scholar 

  11. Fang X, Wei Z, Fang D, Chu X, Tang J, Wang D, Wang X, Li J, Li Y, Yao B (2018) Surface state passivation and optical properties investigation of GaSb via nitrogen plasma treatment. ACS Omega 3(4):4412–4417

    Article  Google Scholar 

  12. Putero M, Coulet MV, Muller C, Baehtz C, Raoux S, Cheng HY (2016) Ge-doped GaSb thin films with zero mass density change upon crystallization for applications in phase change memories. Appl Phys Lett 108(10):101909

    Article  ADS  Google Scholar 

  13. Rajpalke MK, Linhart WM, Birkett M, Yu KM, Scanlon DO, Buckeridge J, Jones TS, Ashwin MJ, Veal TD (2013) Growth and properties of GaSbBi alloys. Appl Phys Lett 103(14):142106

    Article  ADS  Google Scholar 

  14. Rajpalke MK, Linhart WM, Birkett M, Yu KM, Alaria J, Kopaczek J, Kudrawiec R, Jones TS, Ashwin MJ, Veal TD (2014) High Bi content GaSbBi alloys. J Appl Phys 116(4):043511

    Article  ADS  Google Scholar 

  15. Tirado-Mejía L, Villada JA, de los Ríos M, Peñafiel JA, Fonthal G, Espinosa-Arbeláez DG, Ariza-Calderón H, Rodríguez-García ME, (2008) Optical and structural characterization of GaSb and Te-doped GaSb single crystals. Physica B Condens Matter 403(21–22):4027–4032

    Article  ADS  Google Scholar 

  16. Velea A, Borca CN, Socol G, Galca AC, Grolimund D, Popescu M, van Bokhoven JA (2014) In-situ crystallization of GeTe\GaSb phase change memory stacked films. J Appl Phys 116(23):234306

    Article  ADS  Google Scholar 

  17. Jiang K, Lu Y, Li Z, Wang M, Shen X, Wang G, Song S, Song Z (2018) GeTe/Sb4Te films: a candidate for multilevel phase change memory. Mater Sci Eng B 231:81–85

    Article  Google Scholar 

  18. Gotow T, Fujikawa S, Fujishiro HI, Ogura M, Chang WH, Yasuda T, Maeda T (2017) Surface cleaning and pure nitridation of GaSb by in-situ plasma processing. AIP Adv 7(10):105117

    Article  ADS  Google Scholar 

  19. Kim J-J, Kobayashi K, Ikenaga E, Kobata M, Ueda S, Matsunaga T, Kifune K, Kojima R, Yamada N (2007) Electronic structure of amorphous and crystalline (Ge Te) 1–x (Sb 2 Te 3) x investigated using hard x-ray photoemission spectroscopy. Phys Rev B 76(11):115124

    Article  ADS  Google Scholar 

  20. Raoux S, König AK, Cheng HY, Garbin D, Cheek RW, Jordan-Sweet JL, Wuttig M (2012) Phase transitions in Ga–Sb phase change alloys. Phys Status Solidi B 249(10):1999–2004

    Article  ADS  Google Scholar 

  21. Dixon J, Elliott S (2014) Origin of the reverse optical-contrast change of Ga-Sb phase-change materials—an ab initio molecular-dynamics study. Appl Phys Lett 104(14):141905

    Article  ADS  Google Scholar 

  22. Liu Y, Lu Q, Lin G, Liu J, Lu S, Tang Z, He H, Fu Y, Shen X (2019) Effect of thermal annealing on properties of amorphous GaN/p-Si heterojunctions. Mater Res Express 6(8):085904

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aloke Kanjilal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Relevance: Brain-inspired, universal, and in-memory computing technology is needed to remove the von-Neumann architecture bottleneck. To achieve that, we need memories with multiple well-defined resistance levels. For that purpose, we propose a novel N-alloyed GaSb-based phase change alloy exhibiting multi-level threshold switching.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asirvatham, J., Walczak, L. & Kanjilal, A. Multi-level Threshold Switching and Crystallization Characteristics of Nitrogen Alloyed GaSb for Phase Change Memory Application. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 93, 425–431 (2023). https://doi.org/10.1007/s40010-023-00832-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-023-00832-0

Keywords

Navigation