Log in

Iron oxide nanoparticles-loaded hydrogels for effective topical photothermal treatment of skin cancer

  • Original Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Purpose

A hydrogel containing dextran-coated iron oxide nanoparticles (DEX-IONP) was developed, and its applicability in topical photothermal therapy (PTT) of skin cancer was explored in vitro and in vivo.

Methods

DEX-IONP carbopol hydrogel was prepared by adopting the pH-triggered in situ gel-forming method. After preparation, physical characteristics and the photothermal activities of the DEX-IONP gel were evaluated in vitro in varying DEX-IONP concentrations. The photothermal activity was further examined in B16F10 s.c. tumor-bearing mice. Lastly, the efficacy of DEX-IONP gel-based topical PTT was evaluated in vivo.

Results

The prepared DEX-IONP gel retained high viscosity favorable to maintain at the applied site. In addition, the DEX-IONP gel could induce effective heating by laser irradiation. The cellular and in vivo studies evidenced the applicability of DEX-IONP in topical PTT. Finally, the preliminary efficacy study results in the B16F10 s.c. mice model demonstrated that tumor volumes could be significantly reduced by the topical PTT with DEX-IONP gel. Notably, by a single PTT treatment with 100 μgFe/mL DEX-IONP gel and applying 0.5 W laser power for 10 min, the tumor growth could be significantly inhibited by 85%.

Conclusion

Overall, our results demonstrate that DEX-IONP gels may serve as an effective topical PTT agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aiyalu R, Govindarjan A, Ramasamy A (2016) Formulation and evaluation of topical herbal gel for the treatment of arthritis in animal model. Braz J Pharm Sci 52:493–507

    Article  CAS  Google Scholar 

  • Amatya R, Hwang S, Park T, Chung YJ, Ryu S, Lee J, Cheong H, Moon C, Min KA, Shin MC (2021a) BSA/silver nanoparticle-loaded hydrogel film for local photothermal treatment of skin cancer. Pharm Res 38:873–883

    Article  PubMed  CAS  Google Scholar 

  • Amatya R, Hwang S, Park T, Min KA, Shin MC (2021b) In vitro and in vivo evaluation of pegylated starch-coated iron oxide nanoparticles for enhanced photothermal cancer therapy. Pharmaceutics 13:871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aminabhavi TM, Agnihotri SA, Naidu BVK (2004) Rheological properties and drug release characteristics of pH-responsive hydrogels. J Appl Polym Sci 94:2057–2064

    Article  CAS  Google Scholar 

  • Ansari S, Ficiara E, Ruffinatti FA, Stura I, Argenziano M, Abollino O, Cavalli R, Guiot C, D’agata F (2019) Magnetic iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system. Materials 12:465

    Article  PubMed Central  CAS  Google Scholar 

  • Arias LS, Pessan JP, Vieira APM, Lima TMTD, Delbem ACB, Monteiro DR (2018) Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 7:46

    Article  PubMed Central  Google Scholar 

  • Chai Q, Jiao Y, Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3:6

    Article  PubMed Central  Google Scholar 

  • Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yang VC (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29:487–496

    Article  PubMed  CAS  Google Scholar 

  • Coyne DW (2009) Ferumoxytol for treatment of iron deficiency anemia in patients with chronic kidney disease. Expert Opin Pharmacother 10:2563–2568

    Article  PubMed  CAS  Google Scholar 

  • Dadfar SM, Roemhild K, Drude NI, Von Stillfried S, Knuchel R, Kiessling F, Lammers T (2019) Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 138:302–325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doughty ACV, Hoover AR, Layton E, Murray CK, Howard EW, Chen WR (2019) Nanomaterial applications in photothermal therapy for cancer. Materials 12:779

    Article  PubMed Central  CAS  Google Scholar 

  • Dulinska-Litewka J, Lazarczyk A, Halubiec P, Szafranski O, Karnas K, Karewicz A (2019) Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials 12:617

    Article  PubMed Central  CAS  Google Scholar 

  • Estelrich J, Busquets MA (2018) Iron oxide nanoparticles in photothermal therapy. Molecules 23:1567

    Article  PubMed Central  Google Scholar 

  • Gupta B, Kim JO (2021) Recent progress in cancer immunotherapy approaches based on nanoparticle delivery devices. J Pharm Investig 51:399–412

    Article  Google Scholar 

  • Gutierrez FV, De Falco A, Yokoyama E, LaF M, Luz-Lima C, Perez G, Loreto RP, Pottker WE, La Porta FA, Solorzano G, Arsalani S, Baffa O, Araujo J (2021) Magnetic characterization by scanning microscopy of functionalized iron oxide nanoparticles. Nanomaterials 11:2197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han HS, Choi KY (2021) Advances in nanomaterial-mediated photothermal cancer therapies: toward clinical applications. Biomedicines 9:305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hegde MM, Prabhu S, Mutalik S, Chatterjee A, Goda JS, Rao S (2021) Multifunctional lipidic nanocarriers for effective therapy of glioblastoma: recent advances in stimuli-responsive, receptor and subcellular targeted approaches. J Pharm Investig 52:49–74

    Article  Google Scholar 

  • Hou YJ, Yang XX, Liu RQ, Zhao D, Guo CX, Zhu AC, Wen MN, Liu Z, Qu GF, Meng HX (2020) Pathological mechanism of photodynamic therapy and photothermal therapy based on nanoparticles. Int J Nanomedicine 15:6827–6838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hwang YH, Kim Y-J, Lee DY (2021) Hepatic and renal cellular cytotoxic effects of heparin-coated superparamagnetic Iron oxide nanoparticles. Biomater Res 25:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Israel LL, Galstyan A, Holler E, Ljubimova JY (2020) Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. J Control Release 320:45–62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jana S, Manna S, Nayak AK, Sen KK, Basu SK (2014) Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids Surf B Biointerfaces 114:36–44

    Article  PubMed  CAS  Google Scholar 

  • Kiio TM, Park S (2021) Physical properties of nanoparticles do matter. J Pharm Investig 51:35–51

    Article  CAS  Google Scholar 

  • Kim J, Kim J, Jeong C, Kim WJ (2016) Synergistic nanomedicine by combined gene and photothermal therapy. Adv Drug Deliv Rev 98:99–112

    Article  PubMed  CAS  Google Scholar 

  • Kumar AVP, Dubey SK, Tiwari S, Puri A, Hejmady S, Gorain B, Kesharwani P (2021) Recent advances in nanoparticles mediated photothermal therapy induced tumor regression. Int J Pharm 606:120848

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Zhang Y, Wang Y, Zhu W, Li G, Ma X, Zhang Y, Chen S, Tiwari S, Shi K, Zhang S, Fan HM, Zhao YX, Liang XJ (2020) Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics 10:3793–3815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lv Z, He S, Wang Y, Zhu X (2021) Noble metal nanomaterials for NIR-triggered photothermal therapy in cancer. Adv Healthcare Mater 10:2001806

    Article  CAS  Google Scholar 

  • Maharjan P, ** M, Kim D, Yang J, Maharjan A, Shin MC, Cho KH, Kim MS, Min KA (2019) Evaluation of epithelial transport and oxidative stress protection of nanoengineered curcumin derivative-cyclodextrin formulation for ocular delivery. Arch Pharm Res 42:909–925

    Article  PubMed  CAS  Google Scholar 

  • Martinkova P, Brtnicky M, Kynicky J, Pohanka M (2018) Iron oxide nanoparticles: innovative tool in cancer diagnosis and therapy. Adv Healthc Mater 7:1700932

    Article  Google Scholar 

  • Melamed JR, Edelstein RS, Day ES (2015) Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano 9:6–11

    Article  PubMed  CAS  Google Scholar 

  • Nam K, Jung S, Nam JP, Kim SW (2015) Poly(ethylenimine) conjugated bioreducible dendrimer for efficient gene delivery. J Control Release 220:447–455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park T, Lee S, Amatya R, Cheong H, Moon C, Kwak HD, Min KA, Shin MC (2020) ICG-loaded pegylated BSA-silver nanoparticles for effective photothermal cancer therapy. Int J Nanomedicine 15:5459–5471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Purama RK, Goswami P, Khan AT, Goyal A (2009) Structural analysis and properties of dextran produced by Leuconostoc mesenteroides NRRL B-640. Carbohydr Polym 76:30–35

    Article  CAS  Google Scholar 

  • Remya N, Syama S, Sabareeswaran A, Mohanan P (2016) Toxicity, toxicokinetics and biodistribution of dextran stabilized iron oxide nanoparticles for biomedical applications. Int J Pharm 511:586–598

    Article  PubMed  CAS  Google Scholar 

  • Sheng W, He S, Seare WJ, Almutairi A (2017) Review of the progress toward achieving heat confinement—the holy grail of photothermal therapy. J Biomed Opt 22:080901

    Article  PubMed Central  Google Scholar 

  • Sim T, Lim C, Hoang NH, Shin Y, Kim JC, Park JY, Her J, Lee ES, Youn YS, Oh KT (2020) An on-demand pH-sensitive nanocluster for cancer treatment by combining photothermal therapy and chemotherapy. Pharmaceutics 12:839

    Article  PubMed Central  CAS  Google Scholar 

  • Vallabani NVS, Singh S (2018) Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech. https://doi.org/10.1007/s13205-018-1286-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Varges R, P, M Costa C, S Fonseca B, F Naccache M & De Souza Mendes PR, (2019) Rheological characterization of carbopol® dispersions in water and in water/glycerol solutions. Fluids 4:3

    Article  CAS  Google Scholar 

  • Wang YX (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1:35–40

    PubMed  PubMed Central  Google Scholar 

  • Wosko TJ, Ferrara DT, Sartori LS (1984) Histological comparison of the B16 melanoma and its F1 variant. Cancer Lett 24:57–63

    Article  PubMed  CAS  Google Scholar 

  • Yang K, Zhao S, Li B, Wang B, Lan M, Song X (2022) Low temperature photothermal therapy: advances and perspectives. Coord Chem Rev 454:214330

    Article  CAS  Google Scholar 

  • Zhang Y, Zhan X, **ong J, Peng S, Huang W, Joshi R, Cai Y, Liu Y, Li R, Yuan K (2018) Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Sci Rep 8:8720

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhi D, Yang T, O’hagan J, Zhang S, Donnelly RF (2020) Photothermal therapy. J Control Release 325:52–71

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Feng W, Chang J, Tan Y-W, Li J, Chen M, Sun Y, Li F (2016) Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat Commun 7:10437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT; Ministry of Science and ICT) (NRF-2021R1F1A1058214 to Shin MC, and 2021R1F1A1064206 to Min KA) and funded by the Ministry of Education, Science and Technology (NRF-2018R1D1A1A02047809 to Shin MC, and 2018R1D1A1B07048818 to Min KA). The viscosity measurement of the DEX-IONP wet gel was carried out with the help of Korea Polymer Testing & Research Institute (Koptri).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyoung Ah Min or Meong Cheol Shin.

Ethics declarations

Conflict of interest

All authors (R. Amatya, D. Kim, K.A. Min, and M.C. Shin) declare that they have no conflicts of interest.

Research involving human or animal participants

All animal experiments were performed following the protocol approved by the University’s committee for animal research of Gyeongsang National University (GNU-191001-M0047). All applicable international, national, and/or institutional guidelines provided by the Gyeongsang National University Institutional Animal Care and Use Committee for the care and use of animals were followed in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amatya, R., Kim, D., Min, K.A. et al. Iron oxide nanoparticles-loaded hydrogels for effective topical photothermal treatment of skin cancer. J. Pharm. Investig. 52, 775–785 (2022). https://doi.org/10.1007/s40005-022-00593-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-022-00593-9

Keywords

Navigation