Log in

Bacteriophages: cancer diagnosis, treatment, and future prospects

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Early diagnosis is one of the most important factors in cancer treatment. Unfortunately, despite remarkable advances in the diagnosis and treatment methods of cancers in recent years, these methods are far from being perfect and have significant limitations and disadvantages. High costs and unwanted damage to healthy cells are some of the most important challenges.

Area covered

With the advent of novel technologies, potentially advantageous methods are being studied actively. The use of bacteriophages is one of the modern methods for cancer diagnosis and treatment. In the present article, we will discuss the potential advantages and limitations regarding the use of bacteriophages in the diagnosis and treatment of malignancies.

Expert opinion

The use of bacteriophages is one of the more recent methods for cancer diagnosis and treatment. Due to the non-pathogenic nature of bacteriophages, their genetic engineering capability makes them a great option for therapeutic purposes. The exact potential of phages to be used in the diagnosis and treatment of cancer, will be determined with further research in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aghebati-Maleki L, Bakhshinejad B, Baradaran B, Motallebnezhad M, Aghebati-Maleki A et al (2016) Phage display as a promising approach for vaccine development. J Biomed Sci 23(1):66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aina OH, Sroka TC, Chen ML, Lam KS (2002) Therapeutic cancer targeting peptides. Pept Sci 66(3):184–199

    Article  CAS  Google Scholar 

  • Álvarez A, Fernández L, Iglesias B, Rodríguez J, Rodríguez A et al (2019) Phage therapy: unexpected drawbacks to reach hospitals. Future Virol 14(12):779–782

    Article  CAS  Google Scholar 

  • Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279(5349):377–380

    Article  CAS  PubMed  Google Scholar 

  • Asadi-Ghalehni M, Rasaee MJ, Asl NN, Khosravani M, Rajabibazl M et al (2018) Construction of a recombinant phage-vaccine capable of reducing the growth rate of an established LL2 tumor model. Iran J Allergy, Asthma Immunol 17(3):240–249

    Google Scholar 

  • Bábíčková J, Tóthová Ľ, Boor P, Celec P (2013) In vivo phage display—a discovery tool in molecular biomedicine. Biotechnol Adv 31(8):1247–1259

    Article  PubMed  Google Scholar 

  • Bakhshinejad B, Karimi M, Sadeghizadeh M (2014) Bacteriophages and medical oncology: targeted gene therapy of cancer. Med Oncol 31(8):110

    Article  PubMed  CAS  Google Scholar 

  • Bar H, Yacoby I, Benhar I (2008) Killing cancer cells by targeted drug-carrying phage nanomedicines. BMC Biotechnol 8(1):37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barderas R, Babel I, Díaz-Uriarte R, Moreno V, Suárez A et al (2012) An optimized predictor panel for colorectal cancer diagnosis based on the combination of tumor-associated antigens obtained from protein and phage microarrays. J Proteom 75(15):4647–4655

    Article  CAS  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Bazan J, Całkosiński I, Gamian A (2012) Phage display—a powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications. Hum Vaccines Immunotherapeutics 8(12):1817–1828

    Article  CAS  Google Scholar 

  • Bedi D, Musacchio T, Fagbohun OA, Gillespie JW, Deinnocentes P et al (2011) Delivery of siRNA into breast cancer cells via phage fusion protein-targeted liposomes. Nanomedicine: Nanotechnol Biol Med 7(3):315–323

    Article  CAS  Google Scholar 

  • Borysowski J, Górski A (2008) Is phage therapy acceptable in the immunocompromised host? Int J Infect Dis 12(5):466–471

    Article  PubMed  Google Scholar 

  • Bragg R, Van Der Westhuizen W, Lee J-Y, Coetsee E, Boucher C (2014) Bacteriophages as potential treatment option for antibiotic resistant bacteria. Infectious diseases and nanomedicine I. Springer, New Delhi, pp 97–110

    Chapter  Google Scholar 

  • Brown R, Lengeling A, Wang B (2017) Phage Engineering: how advances in molecular biology and synthetic biology are being utilized to enhance the therapeutic potential of bacteriophages. Quant Biol 5(1):42–54

    Article  Google Scholar 

  • Bruttin A, Brüssow H (2005) Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother 49(7):2874–2878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budynek P, Dąbrowska K, Skaradziński G, Górski A (2010) Bacteriophages and cancer. Arch Microbiol 192(5):315–320

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Sun Y-Q, Berglindh T, Mellgård B, Li Z-Q et al (2000) Helicobacter pylori-antigen-binding fragments expressed on the filamentous M13 phage prevent bacterial growth. Biochim Biophy Acta (BBA) 1474(1):107–113

    Article  CAS  Google Scholar 

  • Chan CE, Lim AP, Macary PA, Hanson BJ (2014) The role of phage display in therapeutic antibody discovery. Int Immunol 26(12):649–657

    Article  CAS  PubMed  Google Scholar 

  • Cisek AA, Dąbrowska I, Gregorczyk KP, Wyżewski Z (2017) Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. Curr Microbiol 74(2):277–283

    Article  CAS  PubMed  Google Scholar 

  • Cooper C, Koonjan S, Nilsson A (2018) Enhancing whole phage therapy and their derived antimicrobial enzymes through complex formulation. Pharmaceuticals 11(2):34

    Article  PubMed Central  CAS  Google Scholar 

  • Dabrowska K, Opolski A, Wietrzyk J, Switala-Jelen K, Godlewska J et al (2004a) Anticancer activity of bacteriophage T4 and its mutant HAP1 in mouse experimental tumour models. Anticancer Res 24(6):3991–3996

    CAS  PubMed  Google Scholar 

  • Dabrowska K, Opolski A, Wietrzyk J, Switala-Jelen KI, Godlewska J, Boratynski J, Syper D, Weber-Dabrowska BE, Gorski A (2004b) Anticancer activity of bacteriophage T4 and its mutant HAP1 in mouse experimental tumour models. Anticancer Res 24:3991–3996

    CAS  PubMed  Google Scholar 

  • Dąbrowska K, Kaźmierczak Z, Majewska J, Miernikiewicz P, Piotrowicz A et al (2014) Bacteriophages displaying anticancer peptides in combined antibacterial and anticancer treatment. Future Microbiol 9(7):861–869

    Article  PubMed  CAS  Google Scholar 

  • Deporter SM, Mcnaughton BR (2014) Engineered M13 bacteriophage nanocarriers for intracellular delivery of exogenous proteins to human prostate cancer cells. Bioconjug Chem 25(9):1620–1625

    Article  CAS  PubMed  Google Scholar 

  • Deutscher SL (2010) Phage display in molecular imaging and diagnosis of cancer. Chem Rev 110(5):3196–3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doss J, Culbertson K, Hahn D, Camacho J, Barekzi N (2017) A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 9(3):50

    Article  PubMed Central  CAS  Google Scholar 

  • Edelstein ML, Abedi MR, Wixon J (2007) Gene therapy clinical trials worldwide to 2007—an update. J Gene Med 9(10):833–842

    Article  PubMed  Google Scholar 

  • Elias A, Spector I, Sogolovsky-Bard I, Gritsenko N, Rask L et al (2016) Cancer-specific binary expression system activated in mice by bacteriophage HK022 Integrase. Sci Rep 6:24971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elias A, Gritsenko N, Gorovits R, Spector I, Prag G et al (2018) Anti-cancer binary system activated by bacteriophage HK022 integrase. Oncotarget 9(44):27487

    Article  PubMed  PubMed Central  Google Scholar 

  • Eriksson F, Tsagozis P, Lundberg K, Parsa R, Mangsbo SM et al (2009) Tumor-specific bacteriophages induce tumor destruction through activation of tumor-associated macrophages. J Immunol 182(5):3105–3111

    Article  CAS  PubMed  Google Scholar 

  • Feng S-S, Chien S (2003) Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem Eng Sci 58(18):4087–4114

    Article  CAS  Google Scholar 

  • Fukuda MN (2011) Peptide-displaying phage technology in glycobiology. Glycobiology 22(3):318–325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghotaslou R, Leylabadlo HE, Akhi MT, Sadeghi J, Yousefi L et al (2017) The importance of Helicobacter pylori tnpA, tnpB, and cagA genes in various gastrointestinal diseases. Mol Genet Microbiol Virol 32(1):62–65

    Article  Google Scholar 

  • Gondil VS, Chhibber S (2018) Exploring potential of phage therapy for tuberculosis using model organism. Biomed Biotechnol Res J (BBRJ) 2(1):9

    Article  Google Scholar 

  • Górski A, Międzybrodzki R, Weber-Dąbrowska B, Fortuna W, Letkiewicz S et al (2016) Phage therapy: combating infections with potential for evolving from merely a treatment for complications to targeting diseases. Front Microbiol 7:1515

    Article  PubMed  PubMed Central  Google Scholar 

  • Górski A, Jończyk-Matysiak E, Łusiak-Szelachowska M, Międzybrodzki R, Weber-Dąbrowska B et al (2017) The potential of phage therapy in sepsis. Front Immunol 8:1783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Górski A, Międzybrodzki R, Jończyk-Matysiak E, Weber-Dąbrowska B, Bagińska N et al (2018) Perspectives of phage-eukaryotic cell interactions to control epstein-barr virus infections. Front Microbiol 9:630

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham DY (2015) Helicobacter pylori update: gastric cancer, reliable therapy, and possible benefits. Gastroenterology 148(4):719–731

    Article  PubMed  Google Scholar 

  • Guo Z, Lin H, Ji X, Yan G, Lei L et al (2020) Therapeutic applications of lytic phages in human medicine. Microb Pathog 142:104048

    Article  CAS  PubMed  Google Scholar 

  • Hamidon NH, Suraiya S, Sarmiento ME, Acosta A, Norazmi MN et al (2018) Immune TB antibody phage display library as a tool to study B cell immunity in TB infections. Appl Biochem Biotechnol 184(3):852–868

    Article  CAS  PubMed  Google Scholar 

  • Hamzeh-Mivehroud M, Alizadeh AA, Morris MB, Church WB, Dastmalchi S (2013) Phage display as a technology delivering on the promise of peptide drug discovery. Drug Discov Today 18(23–24):1144–1157

    Article  CAS  PubMed  Google Scholar 

  • Harley CB (2008) Telomerase and cancer therapeutics. Nat Rev Cancer 8(3):167

    Article  CAS  PubMed  Google Scholar 

  • Harper D (2018) Criteria for selecting suitable infectious diseases for phage therapy. Viruses 10(4):177

    Article  PubMed Central  CAS  Google Scholar 

  • Housby JN, Mann NH (2009) Phage therapy. Drug Discov Today 14(11–12):536–540

    Article  CAS  PubMed  Google Scholar 

  • Jacobson T (2007) Development and evaluation of a phage-display based vaccine against prostate cancer. Numerisk analys och datalogi, Kungliga Tekniska högskolan, Stockholm

    Google Scholar 

  • Jafari N, Abediankenari S (2016) Phage particles as vaccine delivery vehicles: concepts, applications and prospects. Asian Pac J Cancer Prev 16(18):8019–8029

    Article  Google Scholar 

  • Keen EC (2015) A century of phage research: bacteriophages and the sha** of modern biology. BioEssays 37(1):6–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Krag DN, Shukla GS, Shen G-P, Pero S, Ashikaga T et al (2006) Selection of tumor-binding ligands in cancer patients with phage display libraries. Can Res 66(15):7724–7733

    Article  CAS  Google Scholar 

  • Küppers R (2003) B cells under influence: transformation of B cells by Epstein-Barr virus. Nat Rev Immunol 3(10):801–812

    Article  PubMed  CAS  Google Scholar 

  • Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8(5):317

    Article  CAS  PubMed  Google Scholar 

  • Larocca C, Schlom J (2011) Viral vector–based therapeutic cancer vaccines. Cancer J (Sudbury Mass) 17(5):359

    Article  CAS  Google Scholar 

  • Larsen SA, Meldgaard T, Fridriksdottir AJR, Lykkemark S, Poulsen PC et al (2016) Raising an antibody specific to breast cancer subpopulations using phage display on tissue sections. Cancer Genom-Proteom 13(1):21–30

    CAS  Google Scholar 

  • Lee KJ, Lee JH, Chung HK, Ju EJ, Song SY et al (2016) Application of peptide displaying phage as a novel diagnostic probe for human lung adenocarcinoma. Amino Acids 48(4):1079–1086

    Article  CAS  PubMed  Google Scholar 

  • Levin BR, Bull JJ (2004) Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol 2(2):166

    Article  CAS  PubMed  Google Scholar 

  • Leylabadlo HE, Zeinalzadeh E, NaR A, Kafil HS (2016) Malassezia species infection of the synovium after total knee arthroplasty surgery. GMS Hyg Infect Control. https://doi.org/10.3205/dgkh000279

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Mao C (2014) Using phage as a platform to select cancer cell-targeting peptides. Methods Mol Biol 1108:57–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HM, Guo K, Yu Z, Feng R, Xu P (2015) Diagnostic value of protein chips constructed by lung-cancer-associated markers selected by the T 7 phage display library. Thoracic Cancer 6(4):469–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin DM, Koskella B, Lin HC (2017) Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 8(3):162

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL et al (2016) Cancer treatment and survivorship statistics. CA Cancer J 66(4):271–289

    Article  Google Scholar 

  • Mobed A, Baradaran B, De La Guardia M, Agazadeh M, Hasanzadeh M et al (2019) Advances in detection of fastidious bacteria: from microscopic observation to molecular biosensors. TrAC Trends Anal Chem 113:157–171

    Article  CAS  Google Scholar 

  • Murgas P, Bustamante N, Araya N, Cruz-Gómez S, Durán E et al (2018) A filamentous bacteriophage targeted to carcinoembryonic antigen induces tumor regression in mouse models of colorectal cancer. Cancer Immunol Immunother 67(2):183–193

    Article  CAS  PubMed  Google Scholar 

  • Nobrega FL, Costa AR, Kluskens LD, Azeredo J (2015) Revisiting phage therapy: new applications for old resources. Trends Microbiol 23(4):185–191

    Article  CAS  PubMed  Google Scholar 

  • Pajtasz-Piasecka E, Rossowska J, Duś D, Weber-Dąbrowska B, Zabłocka A et al (2008) Bacteriophages support anti-tumor response initiated by DC-based vaccine against murine transplantable colon carcinoma. Immunol Lett 116(1):24–32

    Article  CAS  PubMed  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751

    Article  CAS  PubMed  Google Scholar 

  • Pires DP, Cleto S, Sillankorva S, Azeredo J, Lu TK (2016) Genetically engineered phages: a review of advances over the last decade. Microbiol Mol Biol Rev 80(3):523–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pires DP, Melo LD, Boas DV, Sillankorva S, Azeredo J (2017) Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr Opin Microbiol 39:48–56

    Article  CAS  PubMed  Google Scholar 

  • Pirnay J-P, De Vos D, Verbeken G, Merabishvili M, Chanishvili N et al (2011) The phage therapy paradigm: pret-a-porter or sur-mesure? Pharm Res 28(4):934–937

    Article  CAS  PubMed  Google Scholar 

  • Plummer M, Franceschi S, Vignat J, Forman D, De Martel C (2015) Global burden of gastric cancer attributable to Helicobacter pylori. Int J Cancer 136(2):487–490

    Article  CAS  PubMed  Google Scholar 

  • Plummer M, De Martel C, Vignat J, Ferlay J, Bray F et al (2016) Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health 4(9):e609–e616

    Article  PubMed  Google Scholar 

  • Principi N, Silvestri E, Esposito S (2019) Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front Pharmacol 10:513

    Article  PubMed  PubMed Central  Google Scholar 

  • Przystal JM, Waramit S, Pranjol MZI, Yan W, Chu G et al (2019) Efficacy of systemic temozolomide-activated phage-targeted gene therapy in human glioblastoma. EMBO Mol Med 11(4):e8492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qadir MI (2015) Phage therapy: a modern tool to control bacterial infections. Pak J Pharm Sci 28(1):265–270

    PubMed  Google Scholar 

  • Rasmussen UB, Schreiber V, Schultz H, Mischler F, Schughart K (2002) Tumor cell-targeting by phage-displayed peptides. Cancer Gene Ther 9(7):606

    Article  CAS  PubMed  Google Scholar 

  • Reina J, Reina N (2018) Phage therapy, an alternative to antibiotic therapy? Rev Esp Quimioter 31(2):101–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roxo-Rosa M, Oleastro M, Vale FF (2013) Helicobacter pylori eradication—the alternatives beyond antibiotics. In Méndez-Vilas A (eds) Microbial pathogens and strategies for combating them: science, technology and education, pp 1656–1667

  • Sanmukh S, Felisbino S (2017) Bacteriophages in cancer biology and therapies. Clin Oncol 2:1295

    Google Scholar 

  • Sharma S, Chatterjee S, Datta S, Prasad R, Dubey D et al (2017) Bacteriophages and its applications: an overview. Folia Microbiol 62(1):17–55

    Article  CAS  Google Scholar 

  • Shi J, Alagoz O, Erenay FS, Su Q (2014) A survey of optimization models on cancer chemotherapy treatment planning. Ann Oper Res 221(1):331–356

    Article  Google Scholar 

  • Silva VL, Ferreira D, Nobrega FL, Martins IM, Kluskens LD et al (2016) Selection of novel peptides homing the 4T1 CELL line: exploring alternative targets for triple negative breast cancer. PLoS ONE 11(8):e0161290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh R, Patil S, Singh N, Gupta S (2017) Dual functionality nanobioconjugates targeting intracellular bacteria in cancer cells with enhanced antimicrobial activity. Sci Rep 7(1):5792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Souriau C, Hudson PJ (2001) Recombinant antibodies for cancer diagnosis and therapy. Expert Opin Biol Ther 1(5):845–855

    Article  CAS  PubMed  Google Scholar 

  • Taylor MW (2014) The discovery of bacteriophage and the d’herelle controversy. Viruses and man: a history of interactions. Springer, Cham, pp 53–61

    Chapter  Google Scholar 

  • Taylor C, Correa C, Duane FK, Aznar MC, Anderson SJ et al (2017) Estimating the risks of breast cancer radiotherapy: evidence from modern radiation doses to the lungs and heart and from previous randomized trials. J Clin Oncol 35(15):1641

    Article  PubMed  PubMed Central  Google Scholar 

  • Teng T, Liu J, Wei H (2015) Anti-mycobacterial peptides: from human to phage. Cell Physiol Biochem 35(2):452–466

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Hao T, Cao B, Zhang W, Ma Y et al (2015) Clinical end-points associated with Mycobacterium tuberculosis and lung cancer: implications into host-pathogen interaction and coevolution. BioMed Res Int. https://doi.org/10.1155/2015/827829

    Article  PubMed  PubMed Central  Google Scholar 

  • Tothill IE (2009) Seminars in cell & developmental biology. Elsevier, Amsterdam, pp 55–62

    Google Scholar 

  • Viertel TM, Ritter K, Horz H-P (2014) Viruses versus bacteria—novel approaches to phage therapy as a tool against multidrug-resistant pathogens. J Antimicrob Chemother 69(9):2326–2336

    Article  CAS  PubMed  Google Scholar 

  • Wada A, Terashima T, Kageyama S, Yoshida T, Narita M et al (2019) Efficient prostate cancer therapy with tissue-specific homing peptides identified by advanced phage display technology. Mol Ther-Oncol 12:138–146

    Article  CAS  Google Scholar 

  • Wang C-H, Weng C-H, Che Y-J, Wang K, Lee G-B (2015) Cancer cell-specific oligopeptides selected by an integrated microfluidic system from a phage display library for ovarian cancer diagnosis. Theranostics 5(4):431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Narayanaswamy R, Ren H, Gillespie JW, Petrenko VA et al (2018) Phage-derived protein-mediated targeted chemotherapy of pancreatic cancer. J Drug Target 26(5–6):505–515

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Sherwin T, Brown WL, Stockley PG (2005) Delivery of antisense oligonucleotides to leukemia cells by RNA bacteriophage capsids. Nanomedicine: Nanotechnol Biol Med 1(1):67–76

    Article  CAS  Google Scholar 

  • Wu C-H, Liu I-J, Lu R-M, Wu H-C (2016) Advancement and applications of peptide phage display technology in biomedical science. J Biomed Sci 23(1):8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Żaczek M, Górski A, Skaradzińska A, Łusiak-Szelachowska M, Weber-Dąbrowska B (2019) Phage penetration of eukaryotic cells: practical implications. Future Virol 14(11):745–760

    Article  CAS  Google Scholar 

  • Zhang Z-F, Shan X, Wang Y-X, Wang W, Feng S-Y et al (2014) Screening and selection of peptides specific for esophageal cancer cells from a phage display peptide library. J Cardiothorac Surg 9(1):76

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng D-W, Dong X, Pan P, Chen K-W, Fan J-X et al (2019) Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. Nat Biomed Eng 3(9):717–728

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. We would like to thank Editage (www.editage.co.kr) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Bannazadeh Baghi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to declare.

Human and animal rights

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbaszadeh, F., Leylabadlo, H.E., Alinezhad, F. et al. Bacteriophages: cancer diagnosis, treatment, and future prospects. J. Pharm. Investig. 51, 23–34 (2021). https://doi.org/10.1007/s40005-020-00503-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-020-00503-x

Keywords

Navigation