Log in

Comparison of the Infant and Adult Adipose-Derived Mesenchymal Stem Cells in Proliferation, Senescence, Anti-oxidative Ability and Differentiation Potential

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Infant adipose-derived mesenchymal stem cells (ADSCs) collected from excised polydactyly fat tissue, which was surgical waste, could be cultured and expanded in vitro in this study. In addition, the collecting process would not cause pain in the host. In this study, the proliferation, reduction of senescence, anti-oxidative ability, and differentiation potential in the infant ADSCs were compared with those in the adult ADSCs harvested from thigh liposuction to determine the availability of infant ADSCs.

Methods:

Proliferation was determined by detecting the fold changes in cell numbers and doubling time periods. Senescence was analyzed by investigating the age-related gene expression levels and the replicative stress. The superoxide dismutase (SOD) gene expression, adipogenic, neurogenic, osteogenic, and tenogenic differentiation were compared by RT-qPCR. The chondrogenic differentiation efficiency was also determined using RT-qPCR and immunohistochemical staining.

Results:

The proliferation, SOD (SOD1, SOD2 and SOD3) gene expression, the stemness-related gene (c-MYC) and telomerase reverse transcriptase of the infant ADSCs at early passages were enhanced compared with those of the adults'. Cellular senescence related genes, including p16, p21 and p53, and replicative stress were reduced in the infant ADSCs. The adipogenic genes (PPARγ and LPL) and neurogenic genes (MAP2 and NEFH) of the infant ADSC differentiated cells were significantly higher than those of the adults’ while the expression of the osteogenic genes (OCN and RUNX) and tenogenic genes (TNC and COL3A1) of both demonstrated opposite results. The chondrogenic markers (SOX9, COL2 and COL10) were enhanced in the infant ADSC differentiated chondrogenic pellets, and the expression levels of SODs were decreased during the differentiation process.

Conclusion:

Cultured infant ADSCs demonstrate less cellular senescence and replicative stress, higher proliferation rates, better antioxidant defense activity, and higher potential of chondrogenic, adipogenic and neurogenic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hung SC, Cheng H, Pan CY, Tsai MJ, Kao LS, Ma HL. In vitro differentiation of size-sieved stem cells into electrically active neural cells. Stem Cells. 2002;20:522–9.

    Article  CAS  PubMed  Google Scholar 

  2. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  PubMed  Google Scholar 

  3. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276:71–4.

    Article  CAS  PubMed  Google Scholar 

  4. Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther. 2003;5:32–45.

    Article  CAS  PubMed  Google Scholar 

  5. Hildner F, Albrecht C, Gabriel C, Redl H, van Griensven M. State of the art and future perspectives of articular cartilage regeneration: A focus on adipose-derived stem cells and platelet-derived products. J Tissue Eng Regen Med. 2011;5:e36-51.

    Article  CAS  PubMed  Google Scholar 

  6. Ogura F, Wakao S, Kuroda Y, Tsuchiyama K, Bagheri M, Heneidi S, et al. Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine. Stem Cells Dev. 2014;23:717–28.

    Article  CAS  PubMed  Google Scholar 

  7. Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z. Adipose-derived stem cell: A better stem cell than BMSC. Cell Biochem Funct. 2008;26:664–75.

    Article  CAS  PubMed  Google Scholar 

  8. Sharath SS, Ramu J, Nair SV, Iyer S, Mony U, Rangasamy J. Human Adipose tissue derivatives as a potent native biomaterial for tissue regenerative therapies. Tissue Eng Regen Med. 2020;17:123–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ude CC, Sulaiman SB, Min-Hwei N, Hui-Cheng C, Ahmad J, Yahaya NM, et al. Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model. PLoS One. 2014;9:e98770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mehrabani D, Mojtahed Jaberi F, Zakerinia M, Hadianfard MJ, Jalli R, Tanideh N, et al. The healing effect of bone marrow-derived stem cells in knee osteoarthritis: A case report. World J Plast Surg. 2016;5:168–74.

    PubMed  PubMed Central  Google Scholar 

  11. Manafi A, Hamedi ZS, Manafi A, Rajabiani A, Rajaee A, Manafi F. Injectable cartilage shaving: An autologous and long lasting filler material for correction of minor contour deformities in rhinoplasty. World J Plast Surg. 2015;4:93–100.

    PubMed  PubMed Central  Google Scholar 

  12. Mortazavi F, Shafaei H, Soleimani Rad J, Rushangar L, Montaceri A, Jamshidi M. High quality of infant chondrocytes in comparison with adult chondrocytes for cartilage tissue engineering. World J Plast Surg. 2017;6:183–9.

    PubMed  PubMed Central  Google Scholar 

  13. Ye X, Liao C, Liu G, Xu Y, Tan J, Song Z. Age-Related Changes in the regenerative potential of adipose-derived stem cells isolated from the prominent fat pads in human lower eyelids. PLoS One. 2016;11:e0166590.

    Article  Google Scholar 

  14. Ma N, Qiao C, Zhang W, Luo H, Zhang X, Liu D, et al. Original Research: Adipose-derived stem cells from younger donors, but not aging donors, inspire the host self-healing capability through its secreta. Exp Biol Med (Maywood). 2017;242:68–79.

    Article  CAS  Google Scholar 

  15. Castilla E, Paz J, Mutchinick O, Muñoz E, Giorgiutti E, Gelman Z. Polydactyly: A genetic study in South America. Am J Hum Genet. 1973;25:405–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Umair M, Ahmad F, Bilal M, Ahmad W, Alfadhel M. Clinical genetics of polydactyly: An updated review. Front Genet. 2018;9:447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sen S, Domingues CC, Rouphael C, Chou C, Kim C, Yadava N. Genetic modification of human mesenchymal stem cells helps to reduce adiposity and improve glucose tolerance in an obese diabetic mouse model. Stem Cell Res Ther. 2015;6:242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nightingale H, Kemp K, Gray E, Hares K, Mallam E, Scolding N, et al. Changes in expression of the antioxidant enzyme SOD3 occur upon differentiation of human bone marrow-derived mesenchymal stem cells in vitro. Stem Cells Dev. 2012;21:2026–35.

    Article  CAS  PubMed  Google Scholar 

  19. Yoo DY, Kim DW, Chung JY, Jung HY, Kim JW, Yoon YS, et al. Cu, Zn-superoxide dismutase increases the therapeutic potential of adipose-derived mesenchymal stem cells by maintaining antioxidant enzyme levels. Neurochem Res. 2016;41:3300–7.

    Article  CAS  PubMed  Google Scholar 

  20. Yoshimura K, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba-Kojima E, et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol. 2006;208:64–76.

    Article  CAS  PubMed  Google Scholar 

  21. Wu SH, Shirado T, Mashiko T, Feng J, Asahi R, Kanayama K, et al. Therapeutic effects of human adipose-derived products on impaired wound healing in irradiated tissue. Plast Reconstr Surg. 2018;142:383–91.

    Article  CAS  PubMed  Google Scholar 

  22. Tsai CC, Chen YJ, Yew TL, Chen LL, Wang JY, Chiu CH, et al. Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A–p21 by HIF-TWIST. Blood. 2011;117:459–69.

    Article  CAS  PubMed  Google Scholar 

  23. Stanco D, Caprara C, Ciardelli G, Mariotta L, Gola M, Minonzio G, et al. Tenogenic differentiation protocol in xenogenic-free media enhances tendon-related marker expression in ASCs. PLoS One. 2019;14:e0212192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hung SC, Chen NJ, Hsieh SL, Li H, Ma HL, Lo WH. Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells. 2002;20:249–58.

    Article  PubMed  Google Scholar 

  25. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: A persistent public health problem. Clin Microbiol Rev. 2007;20:133–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dimmeler S, Vasa-Nicotera M. Aging of progenitor cells: Limitation for regenerative capacity? J Am Coll Cardiol. 2003;42:2081–2.

    Article  PubMed  Google Scholar 

  27. Rivard A, Fabre JE, Silver M, Chen D, Murohara T, Kearney M, et al. Age-dependent impairment of angiogenesis. Circulation. 1999;99:111–20.

    Article  CAS  PubMed  Google Scholar 

  28. Fafian-Labora JA, Morente-López M, Arufe MC. Effect of aging on behaviour of mesenchymal stem cells. World J Stem Cells. 2019;11:337–46.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Drela K, Stanaszek L, Nowakowski A, Kuczynska Z, Lukomska B. Experimental strategies of mesenchymal stem cell propagation: Adverse events and potential risk of functional changes. Stem Cells Int. 2019;2019:7012692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Davalos AR, Coppe JP, Campisi J, Desprez PY. Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev. 2010;29:273–83.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kasper G, Mao L, Geissler S, Draycheva A, Trippens J, Kühnisch J, et al. Insights into mesenchymal stem cell aging: Involvement of antioxidant defense and actin cytoskeleton. Stem Cells. 2009;27:1288–97.

    Article  CAS  PubMed  Google Scholar 

  32. ** Y, Yang L, Zhang Y, Gao W, Yao Z, Song Y, et al. Effects of age on biological and functional characterization of adiposederived stem cells from patients with endstage liver disease. Mol Med Rep. 2017;16:3510–8.

    Article  CAS  PubMed  Google Scholar 

  33. Beauséjour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, et al. Reversal of human cellular senescence: Roles of the p53 and p16 pathways. EMBO J. 2003;22:4212–22.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cheng H, Qiu L, Ma J, Zhang H, Cheng M, Li W, et al. Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts. Mol Biol Rep. 2011;38:5161–8.

    Article  CAS  PubMed  Google Scholar 

  35. Yan Z, Yin H, Brochhausen C, Pfeifer CG, Alt V, Docheva D. Aged tendon stem/progenitor cells are less competent to form 3D tendon organoids due to cell autonomous and matrix production deficits. Front Bioeng Biotechnol. 2020;8:406.

    Article  Google Scholar 

  36. Wu KJ, Grandori C, Amacker M, Simon-Vermot N, Polack A, Lingner J, et al. Direct activation of TERT transcription by c-MYC. Nat Genet. 1999;21:220–4.

    Article  CAS  PubMed  Google Scholar 

  37. Wright WE, Shay JW. Historical claims and current interpretations of replicative aging. Nat Biotechnol. 2002;20:682–8.

    Article  CAS  PubMed  Google Scholar 

  38. Liu L, DiGirolamo CM, Navarro PA, Blasco MA, Keefe DL. Telomerase deficiency impairs differentiation of mesenchymal stem cells. Exp Cell Res. 2004;294:1–8.

    Article  CAS  PubMed  Google Scholar 

  39. Zheng H, Martin JA, Duwayri Y, Falcon G, Buckwalter JA. Impact of aging on rat bone marrow-derived stem cell chondrogenesis. J Gerontol A Biol Sci Med Sci. 2007;62:136–48.

    Article  PubMed  Google Scholar 

  40. Mah LJ, El-Osta A, Karagiannis TC. γH2AX: A sensitive molecular marker of DNA damage and repair. Leukemia. 2010;24:679–86.

    Article  CAS  PubMed  Google Scholar 

  41. Li H, Mitchell JR, Hasty P. DNA double-strand breaks: A potential causative factor for mammalian aging? Mech Ageing Dev. 2008;129:416–24.

  42. Mah LJ, El-Osta A, Karagiannis TC. γH2AX as a molecular marker of aging and disease. Epigenetics. 2010;5:129–36.

    Article  CAS  PubMed  Google Scholar 

  43. Cheng NC, Hsieh TY, Lai HS, Young TH. High glucose-induced reactive oxygen species generation promotes stemness in human adipose-derived stem cells. Cytotherapy. 2016;18:371–83.

    Article  CAS  PubMed  Google Scholar 

  44. Lyublinskaya OG, Borisov YG, Pugovkina NA, Smirnova IS, Obidina JV, Ivanova JS, et al. Reactive oxygen species are required for human mesenchymal stem cells to initiate proliferation after the quiescence exit. Oxid Med Cell Longev. 2015;2015:502105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chang W, Song BW, Moon JY, Cha MJ, Ham O, Lee SY, et al. Anti-death strategies against oxidative stress in grafted mesenchymal stem cells. Histol Histopathol. 2013;28:1529–36.

    Article  CAS  PubMed  Google Scholar 

  46. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244:6049–55.

    Article  CAS  Google Scholar 

  47. Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 2001;21:2–14.

    Article  CAS  Google Scholar 

  48. Kinouchi H, Epstein CJ, Mizui T, Carlson E, Chen SF, Chan PH. Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc Natl Acad Sci U S A. 1991;88:11158–62.

    Article  CAS  Google Scholar 

  49. Yang G, Chan PH, Chen J, Carlson E, Chen SF, Weinstein P, et al. Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke. 1994;25:165–70.

    Article  Google Scholar 

  50. Heywood HK, Lee DA. Bioenergetic reprogramming of articular chondrocytes by exposure to exogenous and endogenous reactive oxygen species and its role in the anabolic response to low oxygen. J Tissue Eng Regen Med. 2017;11:2286–94.

    Article  CAS  PubMed  Google Scholar 

  51. Jallali N, Ridha H, Thrasivoulou C, Butler P, Cowen T. Modulation of intracellular reactive oxygen species level in chondrocytes by IGF-1, FGF, and TGF-beta1. Connect Tissue Res. 2007;48:149–58.

    Article  CAS  PubMed  Google Scholar 

  52. Kim KS, Choi HW, Yoon HE, Kim IY. Reactive oxygen species generated by NADPH oxidase 2 and 4 are required for chondrogenic differentiation. J Biol Chem. 2010;285:40294–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shi YY, Nacamuli RP, Salim A, Longaker MT. The osteogenic potential of adipose-derived mesenchymal cells is maintained with aging. Plast Reconstr Surg. 2005;116:1686–96.

    Article  CAS  PubMed  Google Scholar 

  54. Kirkland JL, Hollenberg CH, Gillon WS. Ageing, differentiation, and gene expression in rat epididymal preadipocytes. Biochem Cell Biol. 1993;71:556–61.

    Article  CAS  PubMed  Google Scholar 

  55. James AW. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica (Cairo). 2013;2013:684736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the work that was assisted in part by the Division of the Experimental Surgery of the Department of Surgery, Taipei Veterans General Hospital. This study was supported in part by grants from the Taipei Veterans General Hospital (V107C-108), the Ministry of Science and Technology (MOST 106–2314-B-075–060), the Taoyuan General Hospital, Ministry of Health and Welfare (PTH110024), and the National Yang Ming Chiao Tung University Hospital (RD0021-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-pan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

The collection of human ADSCs was approved by the Institutional Review Board (IRB) of the Taipei Veterans General Hospital (IRB No. 2020–06-010B), and the adipose tissue was collected with patient informed consent. In addition, the procedures involving animals were approved by the Institutional Animal Care and Use Committee of the Taipei Veterans General Hospital.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 1027 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SH., Yu, JH., Liao, YT. et al. Comparison of the Infant and Adult Adipose-Derived Mesenchymal Stem Cells in Proliferation, Senescence, Anti-oxidative Ability and Differentiation Potential. Tissue Eng Regen Med 19, 589–601 (2022). https://doi.org/10.1007/s13770-022-00431-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-022-00431-x

Keywords

Navigation