Log in

Microbial synthesis of hydroxytyrosol and hydroxysalidroside

  • Article
  • Published:
Applied Biological Chemistry Submit manuscript

Abstract

Plant-derived phenolic compounds, such as hydroxytyrosol and hydroxysalidroside, have a beneficial impact on human health owing to their antioxidant activity. In this study, we used Escherichia coli to synthesize hydroxytyrosol. Tyrosine decarboxylase from Papaver somniferum, tyrosine oxidase from Micrococcus luteus, and 4-hydroxyphenylacetate 3-monooxygenase from E. coli were transformed into the bacterial cell. The resulting transformant successfully synthesized hydroxytyrosol. Furthermore, we used the engineered E. coli strains to synthesize ~ 268.3 mg/L hydroxytyrosol. Three uridine diphosphate-dependent glycosyltransferases (UGTs), which were previously shown to convert tyrosol into salidroside, were tested to synthesize hydroxysalidroside, and one of UGTs was used to synthesize hydroxysalidroside from hydroxytyrosol. Finally, E. coli harboring this UGT converted approximately 50% of hydroxytyrosol into hydroxysalidroside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Delmas D, Aires V, Limagne E, Dutartre P, Mazué F, Ghiringhelli F, Latruffe N (2011) Transport, stability, and biological activity of resveratrol. Ann N Y Acad Sci 1215:48–59

    Article  CAS  PubMed  Google Scholar 

  2. Upadhyay R, Mohan Rao LJ (2013) An outlook on chlorogenic acids-occurrence, chemistry, technology, and biological activities. Crit Rev Food Sci Nutr 53:968–984

    Article  CAS  PubMed  Google Scholar 

  3. Vilaplana-Pérez C, Auñón D, García-Flores LA, Gil-Izquierdo A (2014) Hydroxytyrosol and potential uses in cardiovascular diseases, cancer, and AIDS. Front Nutr 1:18

    PubMed  PubMed Central  Google Scholar 

  4. Richards KH (2014) The most powerful natural antioxidant discovered to date-hydroxytyrosol. https://www.prohealth.com/library/the-most-powerful-natural-antioxidant-discovered-to-datehydroxytyrosol-29641

  5. Hagiwara K, Goto T, Araki M, Miyazaki H, Hagiwara H (2011) Olive polyphenol hydroxytyrosol prevents bone loss. Eur J Pharmacol 662:78–84

    Article  CAS  PubMed  Google Scholar 

  6. González-Santiago M, Martín-Bautista E, Carrero JJ, Fonollá J, Baró L, Bartolomé MV, Gil-Loyzaga P, López-Huertas E (2006) One-month administration of hydroxytyrosol, a phenolic antioxidant present in olive oil, to hyperlipemic rabbits improves blood lipid profile, antioxidant status, and reduces atherosclerosis development. Atherosclerosis 188:35–42

    Article  CAS  PubMed  Google Scholar 

  7. Vázquez-Velasco M, Esperanza Díaz L, Lucas R, Gómez-Martínez S, Bastida S, Marcos A, Sánchez-Muniz FJ (2011) Effects of hydroxytyrosol-enriched sunflower oil consumption on CVD risk factors. Br J Nutr 105:1448–1552

    Article  CAS  PubMed  Google Scholar 

  8. Schaffer S, Müller WE, Eckert GP (2010) Cytoprotective effects of olive mill wastewater extract and its main constituent hydroxytyrosol in PC12 cells. Pharmacol Res 62:322–327

    Article  CAS  PubMed  Google Scholar 

  9. Ristagno G, Fumagalli F, Porretta-Serapiglia C, Orrù A, Cassina C, Pesaresi M, Masson S, Villanova L, Merendino A, Villanova A, Cervo L, Lauria G, Latini R, Bianchi R (2012) Hydroxytyrosol attenuates peripheral neuropathy in streptozotocin-induced diabetes in rats. J Agric Food Chem 60:5859–5865

    Article  CAS  PubMed  Google Scholar 

  10. Yousef GG, Grace MH, Cheng DM, Belolipov IV, Raskin I, Lila MA (2006) Comparative phytochemical characterization of three Rhodiola species. Phytochemistry 67:2380–2391

    Article  CAS  PubMed  Google Scholar 

  11. Greca MD, Ferrara Maria, Fiorentino MFA, Monaco P, Previtera L (1998) Antialgal compounds from Zantedeschia aethiopica. Phytochemistry 49:1299–1304

    Article  Google Scholar 

  12. Yang JH, Kondratyuk TP, Jermihov KC, Marler LE, Qiu X, Choi Y, Cao H, Yu R, Sturdy M, Huang R, Liu Y, Wang LQ, Mesecar AD, van Breemen RB, Pezzuto JM, Fong HH, Chen YG, Zhang HJ (2011) Bioactive compounds from the fern Lepisorus contortus. J Nat Prod 74:129–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu YG, Li X, **ong DC, Yu B, Pu X, Ye XS (2015) Synthetic phenylethanoid glycoside derivatives as potent neuroprotective agents. Eur J Med Chem 5:313–323

    Article  CAS  Google Scholar 

  14. Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508:1–12

    Article  CAS  PubMed  Google Scholar 

  15. Satoh Y, Tajima K, Munekata M, Keasling JD, Lee TS (2012) Engineering of l-tyrosine oxidation in Escherichia coli and microbial production of hydroxytyrosol. Met Eng 14:603–610

    Article  CAS  Google Scholar 

  16. Wei T, Cheng B-Y, Liu J-Z (2016) Genome engineering Escherichia coli for L-DOPA overproduction from glucose. Sci Rep 6:30080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim MJ, Kim B-G, Ahn J-H (2013) Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Appl Microbiol Biot 97:7195–7204

    Article  CAS  Google Scholar 

  18. An DG, Yang SM, Kim BG, Ahn J-H (2016) Biosynthesis of two quercetin O-diglycosides in Escherichia coli. J Ind Microbioi Biotechnol 43:841–849

    Article  CAS  Google Scholar 

  19. Yoon J-A, Kim B-G, Lee WJ, Lim Y, Chong Y, Ahn J-H (2012) Production of a novel quercetin glycoside through metabolic engineering of Escherichia coli. Appl Environ Microbiol 78:4256–4262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lütke-Eversloh T, Stephanopoulos G (2007) L-Tyrosine production by deregulated strains of Escherichia coli. Appl Microbiol Biotechnol 75:103–110

    Article  CAS  PubMed  Google Scholar 

  21. Jung DE, Kim SY, Ahn J-H (2017) Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli. Sci Rep 7:2578

    Article  CAS  Google Scholar 

  22. Kaminaga Y, Schnepp J, Peel G, Kish CM, Ben-Nissan G, Weiss D, Orlova I, Lavie O, Rhodes D, Wood K, Porterfield DM, Cooper AJ, Schloss JV, Pichersky E, Vainstein A, Dudareva N (2006) Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J Biol Chem 281:23357–23366

    Article  CAS  PubMed  Google Scholar 

  23. Jones P, Messner B, Nakajima J, Schäffner AR, Saito K (2003) UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J Biol Chem 278:43910–43918

    Article  CAS  PubMed  Google Scholar 

  24. Poppenberger B, Fujioka S, Soeno K, George GL, Vaistij FE, Hiranuma S, Seto H, Takatsuto S, Adam G, Yoshida S, Bowles D (2005) The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proc Natl Acad Sci 102:15253–15258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. ** SH, Ma XM, Kojima M, Sakakibara H, Wang YW, Hou BK (2013) Overexpression of glucosyltransferase UGT85A1 influences trans-zeatin homeostasis and trans-zeatin responses likely through O-glucosylation. Planta 237:991–999

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Next-Generation BioGreen 21 Program (PJ01326001), Rural Development Administration, and Priority Research Centers Program through the National Research Foundation of Korea funded by the Ministry of Education, Science, and Technology (2009-0093824).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong-Hoon Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choo, H.J., Kim, E.J., Kim, S.Y. et al. Microbial synthesis of hydroxytyrosol and hydroxysalidroside. Appl Biol Chem 61, 295–301 (2018). https://doi.org/10.1007/s13765-018-0360-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-018-0360-x

Keywords

Navigation