Log in

Effects of enzymatic hydrolysate from seahorse Hippocampus abdominalis on testosterone secretion from TM3 Leydig cells and in male mice

  • Article
  • Published:
Applied Biological Chemistry Submit manuscript

Abstract

Protein hydrolysates, the so-called bioactive peptides, are specific protein fragments that have positive effects on several body functions and may improve human health. Marine organism-derived protein hydrolysates and bioactive peptides have shown to possess many physiological functions. Seahorses, used in traditional medicine, are generally ground to powder form either for direct application or for application following dissolution in warm water. In this present study, we purified, hydrolyzed, and characterized two bioactive peptides (ALC and PEP) obtained from seahorse (Hippocampus abdominalis). The hydrolysates derived from seahorse significantly upregulated the expression of cyclin D and cyclin E and increased cell proliferation and testosterone level in the TM3 mouse Leydig cell line. These findings suggest that the hydrolysates stimulate the proliferation of TM3 cells via the AKT, ERK, and JNK pathways. The decline in the circulating testosterone levels in older men is associated with various adverse health effects. Following daily intake of hydrolysates for 12 weeks, the circulating level of testosterone and the sperm count in mice were measured. We found increased sperm motility (sperm count) as well as an increase in the testosterone level in male mice following a 12-week intake of hydrolysates derived from H. abdominalis. Hence, it can be suggested that seahorse-derived hydrolysates play an important role in improving male health by improving the serum testosterone level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akpantah A, Oremosu A, Ajala M, Noronha C, Okanlawon A (2003) The effect of crude extract of Garcinia Kola seed on the histology and hormonal milieu of male sprague-dawley rats’ reproductive organs. Niger J Health Biomed Sci 2:40–46

    Google Scholar 

  • Barqawi A, Crawford E (2006) Testosterone replacement therapy and the risk of prostate cancer. Is there a link? Int J Impotence Res 18:323–328

    Article  CAS  Google Scholar 

  • Bertoli C, Skotheim JM, de de Bruin RA (2013) Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol 14:518–528

    Article  CAS  Google Scholar 

  • Bhasin S, Woodhouse L, Storer TW (2001) Proof of the effect of testosterone on skeletal muscle. J Endocrinol 170:27–38

    Article  CAS  Google Scholar 

  • Bui NT, Ho MT, Kim YM, Lim Y, Cho M (2014) Flavonoids promoting HaCaT migration: II. Molecular mechanism of 4′, 6, 7-trimethoxyisoflavone via NOX2 activation. Phytomedicine 21:570–577

    Article  CAS  Google Scholar 

  • Butler CM, Shaw G, Clark J, Renfree MB (2008) The functional development of Leydig cells in a marsupial. J Anat 212:55–66

    Article  Google Scholar 

  • Carrell D, Aston K, Oliva R, Emery B, De Jonge C (2016) The “omics” of human male infertility: integrating big data in a systems biology approach. Cell Tissue Res 363:295–312

    Article  CAS  Google Scholar 

  • Dudek SM, Chiang ET, Camp SM, Guo Y, Zhao J, Brown ME, Singleton PA, Wang L, Desai A, Arce FT, Lal R, Van Eyk JE, Imam SZ, Garcia JG (2010) Abl tyrosine kinase phosphorylates nonmuscle Myosin light chain kinase to regulate endothelial barrier function. Mol Biol Cell 21:4042–4056

    Article  CAS  Google Scholar 

  • Ebomoyi M, Ahumibe K (2014) Serum testosterone and testicular morphology in garlic-fed wistar rats following chronic garlic feeding. J Physiol Pathol 1(3):39–43

    Google Scholar 

  • Erdmann K, Cheung BW, Schröder H (2008) The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J Nutr Biochem 19:643–654

    Article  CAS  Google Scholar 

  • Gakunga NJ, Mugisha K, Owiny D, Waako P (2014) Effects of crude aqueous leaf extracts of Citropsis articulata and Mystroxylon aethiopicum on sex hormone levels in male albino rats. Int J Pharm Sci Invent 3:5–17

    Google Scholar 

  • Griswold SL, Behringer RR (2009) Fetal Leydig cell origin and development. Sex Dev 3:1–15

  • Haider SG (2004) Cell biology of Leydig cells in the testis. Int Rev Cytol 233:181–241

    Article  CAS  Google Scholar 

  • Hales DB, Allen JA, Shankara T, Janus P, Buck S, Diemer T, Hales KH (2005) Mitochondrial function in Leydig cell steroidogenesis. Ann N Y Acad Sci 1061:120–134

    Article  CAS  Google Scholar 

  • Himaya S, Ryu B, Qian Z, Kim S (2012) Paeonol from Hippocampus kuda Bleeler suppressed the neuro-inflammatory responses in vitro via NF-κB and MAPK signaling pathways. Taxicol Vitro 26:878–887

    Article  CAS  Google Scholar 

  • Horstman AM, Dillon EL, Urban RJ, Sheffield-Moore M (2012) The role of androgens and estrogens on healthy aging and longevity. J Gerontol A Biol Sci Med Sci 67:1140–1152

    Article  Google Scholar 

  • Hwang T, Liao T, Lin J, Lin Y, Lee S, Lai Y, Kao S (2011) Low-dose testosterone treatment decreases oxidative damage in TM3 Leydig cells. Asian J Androl 13:432–437

    Article  CAS  Google Scholar 

  • Ibañez E, Herrero M, Mendiola JA, Castro-Puyana M (2012) Extraction and characterization of bioactive compounds with health benefits from marine resources: macro and micro algae, cyanobacteria, and invertebrates. In: Hayes M (ed) Marine bioactive compounds, anonymous. Springer, New York, pp 55–98

    Chapter  Google Scholar 

  • Ibebunjo C, Eash JK, Li C, Ma Q, Glass DJ (2011) Voluntary running, skeletal muscle gene expression, and signaling inversely regulated by orchidectomy and testosterone replacement. Am J Physiol Endocrinol Metab 300:E327–E340

    Article  CAS  Google Scholar 

  • Kasuga S, Uda N, Kyo E, Ushijima M, Morihara N, Itakura Y (2001) Pharmacologic activities of aged garlic extract in comparison with other garlic preparations. J Nut 131:1080S–1104S

    CAS  Google Scholar 

  • Ketnawa S, Benjakul S, Martínez-Alvarez O, Rawdkuen S (2014) Three-phase partitioning and proteins hydrolysis patterns of alkaline proteases derived from fish viscera. Sep Purif Technol 132:174–181

    Article  CAS  Google Scholar 

  • Khaki A, Fathiazad F, Nouri M, Afshin Khaki A, Ozanci CC, Ghafari-Novin M, Hamadeh M (2009) The effects of Ginger on spermatogenesis and sperm parameters of rat. Int J Reprod Biomed 7:7–12

    CAS  Google Scholar 

  • Kilinc F, Kayaselcuk F, Aygun C, Guvel S, Egilmez T, Ozkardes H (2004) Experimental varicocele induces hypoxia inducible factor-1α, vascular endothelial growth factor expression and angiogenesis in the rat testis. J Urol 172:1188–1191

    Article  CAS  Google Scholar 

  • Kim S (2013) Marine proteins and peptides: biological activities and applications. Wiley, New York

    Book  Google Scholar 

  • Kwon YK, Choi SJ, Kim CR, Kim JK, Kim Y, Choi JH, Song S, Kim C, Park GG, Park C (2016) Antioxidant and cognitive-enhancing activities of Arctium lappa L. roots in Aβ1-42-induced mouse model. Appl Biol Chem 59:553–565

  • Liu Y, Su X, Hao J, Chen M, Liu W, Liao X, Li G (2016) Overexpression of PRL7D1 in Leydig Cells Causes Male Reproductive Dysfunction in Mice. Int J Mol Sci 17:96

  • Lopes S, Sun J, Jurisicova A, Meriano J, Casper RF (1998) Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertil Steril 69:528–532

    Article  CAS  Google Scholar 

  • Lordan S, Ross RP, Stanton C (2011) Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs 9:1056–1100

    Article  CAS  Google Scholar 

  • Lucas TF, Nascimento AR, Pisolato R, Pimenta MT, Lazari MFM, Porto CS (2014) Receptors and signaling pathways involved in proliferation and differentiation of sertoli cells. Spermatogenesis 4:e28138

    Article  Google Scholar 

  • Mahabadi JA, Nikzad H, Taherian A, Mohammadi F (2013) The effects of vasectomy on epididymal morphology and sperm parameters in Adult Male Balb/c mice. Int J Morphol 31(4):1349–1354

    Article  Google Scholar 

  • Matsumoto AM (2002) Andropause: clinical implications of the decline in serum testosterone levels with aging in men. J Gerontol A Biol Sci Med Sci 57:M76–M99

    Article  Google Scholar 

  • Mendoza MC, Er EE, Blenis J (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36:320–328

  • Naughton CK, Nangia AK, Agarwal A (2001) Pathophysiology of varicoceles in male infertility. Hum Reprod Update 7:473–481

    Article  CAS  Google Scholar 

  • Nigro N, Christ-Crain M (2012) Testosterone treatment in the aging male: myth or reality. Swiss Med Wkly 142:w13539

    Google Scholar 

  • Noh Y, Kim D, Kim JY, Park J, Kim OH, Han D, Kim W, Kim S, Lee M, Heo S (2012) Improvement of andropause symptoms by dandelion and rooibos extract complex CRS-10 in aging male. Nutr Res Pract 6:505–512

    Article  Google Scholar 

  • Ofem OE (2014) Enhancement of some sex hormones concentrations by consumption of leaves extract of Viscum album (mistletoe) in rats. Asian J Med Sci 5:87–90

    Article  Google Scholar 

  • O’Shaughnessy PJ, Fowler PA (2011) Endocrinology of the mammalian fetal testis. Reproduction 141:37–46

  • Pang L, Zhu K, Feng X, Liu W, Peng D, Qiu L, Gao X, Deng J, Li Y, Zhao X (2015) Protective effect of liensinine on periodontitis through its antioxidant effect in mice. J Korean Soc Appl Biol Chem 58:927–936

    Article  CAS  Google Scholar 

  • Park JS, Han K (2013) The spermatogenic effect of yacon extract and its constituents and their inhibition effect of testosterone metabolism. Biomed Ther 21:153–160

    CAS  Google Scholar 

  • Poutahidis T, Springer A, Levkovich T, Qi P, Varian BJ, Lakritz JR, Ibrahim YM, Chatzigiagkos A, Alm EJ, Erdman SE (2014) Probiotic microbes sustain youthful serum testosterone levels and testicular size in aging mice. PLoS ONE 9:e84877

    Article  Google Scholar 

  • Rutherfurd-Markwick KJ, Moughan PJ (2005) Bioactive peptides derived from food. J AOAC Int 88:955–966

    CAS  Google Scholar 

  • Ryan JT, Ross RP, Bolton D, Fitzgerald GF, Stanton C (2011) Bioactive peptides from muscle sources: meat and fish. Nutrients 3:765–791

    Article  CAS  Google Scholar 

  • Saito K, O’Donnell L, McLachlan RI, Robertson DM (2000) Spermiation failure is a major contributor to early spermatogenic suppression caused by hormone withdrawal in adult rats 1. Endocrinology 141:2779–2785

    CAS  Google Scholar 

  • Saleh RA, HCLD AA (2002) Oxidative stress and male infertility: from research bench to clinical practice. J Androl 23:737–752

    CAS  Google Scholar 

  • Sattler F, Bhasin S, He J, Chou CP, Castaneda-Sceppa C, Yarasheski K, Binder E, Schroeder ET, Kawakubo M, Zhang A, Roubenoff R, Azen S (2011) Testosterone threshold levels and lean tissue mass targets needed to enhance skeletal muscle strength and function: the HORMA trial. J Gerontol A Biol Sci Med Sci 66:122–129

    Article  Google Scholar 

  • Schwartz E, Holtorf K (2011) Hormone replacement therapy in the geriatric patient: current state of the evidence and questions for the future. Estrogen, progesterone, testosterone, and thyroid hormone augmentation in geriatric clinical practice: part 1. Clin Geriatr Med 27:541–559

    Article  Google Scholar 

  • Shahidi F, Zhong Y (2008) Bioactive peptides. J AOAC Int 91:914–931

    CAS  Google Scholar 

  • Steidle C, Schwartz S, Jacoby K, Sebree T, Smith T, Bachand R (2003) AA2500 testosterone gel normalizes androgen levels in aging males with improvements in body composition and sexual function. J Clin Endocrinol Metab 88:2673–2681

    Article  CAS  Google Scholar 

  • Sukcharoen N, Keith J (1996) Evaluation of the percentage of sperm motility at 24 h and sperm survival ratio for prediction of in vitro fertilization. Andrologia 28:203–210

    Article  CAS  Google Scholar 

  • Szulcek R, Bogaard HJ, van Nieuw Amerongen GP (2014) Electric cell-substrate impedance sensing for the quantification of endothelial proliferation, barrier function, and motility. J Vis Exp 85:e51300

    Google Scholar 

  • Toth G, Zenick H, Smith M (1989) Effects of epichlorohydrin on male and female reproduction in Long-Evans rats. Fundam Appl Toxicol 13:16–25

    Article  CAS  Google Scholar 

  • Travison TG, Basaria S, Storer TW, Jette AM, Miciek R, Farwell WR, Choong K, Lakshman K, Mazer NA, Coviello AD, Knapp PE, Ulloor J, Zhang A, Brooks B, Nguyen AH, Eder R, LeBrasseur N, Elmi A, Appleman E, Hede-Brierley L, Bhasin G, Bhatia A, Lazzari A, Davis S, Ni P, Collins L, Bhasin S (2011) Clinical meaningfulness of the changes in muscle performance and physical function associated with testosterone administration in older men with mobility limitation. J Gerontol A Biol Sci Med Sci 66:1090–1099

    Article  Google Scholar 

  • Vermeulen A, Kaufman J (1995) Ageing of the hypothalamo-pituitary-testicular axis in men. Horm Res Paediatr 43:25–28

    Article  CAS  Google Scholar 

  • Vincent AC (1995) Trade in seahorses for traditional Chinese medicines, aquarium fishes and curios. Taffic Bull-Wild Trade Monit Unit 15:125–128

    Google Scholar 

  • Vincent A, Foster S, Koldewey H (2011) Conservation and management of seahorses and other Syngnathidae. J Fish Biol 78:1681–1724

    Article  CAS  Google Scholar 

  • Weinbauer GF, Luetjens CM, Simoni M, Nieschlag E (2010) Physiology of testicular function. In: Nieschlag E (ed) Andrology, anonymous. Springer, Berlin, pp 11–59

    Chapter  Google Scholar 

  • World Health Organisation (1999) WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. Cambridge University Press, Cambridge

    Google Scholar 

  • Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18

    Article  CAS  Google Scholar 

  • Zhang N, Xu B, Mou C, Yang W, Wei J, Lu L, Zhu J, Du J, Wu X, Ye L (2003) Molecular profile of the unique species of traditional Chinese medicine, Chinese seahorse (Hippocampus kuda Bleeker). FEBS Lett 550:124–134

    Article  CAS  Google Scholar 

  • Zirkin BR, Chen H (2000) Regulation of Leydig cell steroidogenic function during aging. Biol Reprod 63:977–981

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was a part of the Project titled “Development of functional foods using the form hippocampus” (No. 20150343), funded by the Ministry of Oceans and Fisheries, Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young Mee Kim or Moonjae Cho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.M., Jeon, Y.J., Huh, J.S. et al. Effects of enzymatic hydrolysate from seahorse Hippocampus abdominalis on testosterone secretion from TM3 Leydig cells and in male mice. Appl Biol Chem 59, 869–879 (2016). https://doi.org/10.1007/s13765-016-0237-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-016-0237-9

Keywords

Navigation