Log in

Antioxidant and antitumor activities of β-glucan-rich exopolysaccharides with different molecular weight from Paenibacillus polymyxa JB115

  • Article
  • Published:
Journal of the Korean Society for Applied Biological Chemistry Submit manuscript

Abstract

β-Glucan isolated from cell wall of fungi not only has low purity and yield, but also causes adverse effects. Consequently, extracellular β-glucan produced by microorganisms is the focus of this study. β-Glucan-rich exopolysaccharides (G-EPSs) with different molecular weights from Paenibacillus polymyxa JB115 were prepared by ultrafiltration and spray-drying. The weight-average molecular masses of the G-EPSs, P-SD-1 (spray-dried G-EPSs powder prepared below 100 kDa) and P-SD-2 (spray-dried G-EPSs powder prepared above 100 kDa), were 7.084×104 and 9.235×105 g/mol, respectively. β-Glucan content was 47.38% in P-SD-1 and 73.12% in P-SD-2. The hydroxyl radical- and superoxide radicalscavenging activities of P-SD-2 at 1 mg/mL (39.45 and 87.34%, respectively) were higher than those of P-SD-1 (30.32 and 53.06%, respectively). Maximal nitric oxide (22.24±1.34 μM) was generated in the presence of P-SD-2 (1 mg/mL) and the antitumor activity of P-SD-2 was higher than P-SD-1 in four tumor cell lines (HeLa, Sarcoma 180, A549, and Hep3B cells). Thus, antioxidant and antitumor activities could be enhanced by regulating the molecular weight of G-EPSs. We anticipate that the food and medicinal use of G-EPSs will follow further characterization of this class of exopolysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi Y, Ohno N, Ohsawa M, Oikawa S, and Yadomae T (1990) Change of biological activities of (1–3)-β-d-glucan from Grifola frondosa upon molecular weight reduction by heat treatment. Chem Pharm Bull 38, 477–481.

    Article  CAS  Google Scholar 

  • Ahn SG, Suh HH, Lee CH, Moon SH, Kim SH, Ahn KH et al. (1998) Isolation and characterization of a novel polysaccharide producing Bacillus polymyxa A49 KCTC 4648P. J Microbiol Biotechnol 8, 171–177.

    CAS  Google Scholar 

  • Chao D, Zhun H, Haitian F, Minghua H, **n X, and **ghua C (2012) Chemical analysis and antioxidant activity in vitro of a β-d-glucan isolated from Dictyophora indusiata. Int J Biol Macromol 51, 70–75.

    Article  Google Scholar 

  • Chen J, Da W, Zhang D, Liu Q, and Kang J (2005). Water-soluble antioxidants improve the antioxidant and anticancer activity of low concentrations of curcumin in human leukemia cells. Pharmazie 60, 57–61.

    CAS  Google Scholar 

  • Cleary JA, Kelly G, and Husband AJ (1999) The effect of molecular weight and β-1,6-linkages on priming of macrophage function in mice by (1,3)-β-d-glucan. Immunol Cell Biol 77, 395–403.

    Article  CAS  Google Scholar 

  • Cohen G and Heikkila RE (1974) The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem 25, 2447–2452.

    Google Scholar 

  • Cui S, Reichner JS, Mateo RB, and Albina JE (1994). Activated murine macrophages induce apoptosis in tumor cells through nitric oxidedependent or-independent mechanisms. Cancer Res 54, 2462–2467.

    CAS  Google Scholar 

  • Dore GC, Azevedo TG, Souza MR, Rego LA, Dantas JCM, Silva FRF et al. (2007) Antiinflammatory, antioxidant and cytotoxic actions of β-glucanrich extract from Geastrum saccatum mushroom. Int Immunopharmacol 7, 1160–1169.

    Article  Google Scholar 

  • Gummadi SN and Kumar K (2005) Production of extracellular water insoluble β-1,3-glucan(curdlan) from Bacillus sp. SNC07. Biotechnol Bioprocess Eng 10, 546–551.

    Article  CAS  Google Scholar 

  • Hong JH and Choi YH (2007) Physicochemical properties of protein bound polysaccharide from Agaricus blazei Murill prepared by ultrafiltration and spray drying process. Int J Food Sci Tech 42, 1–8.

    Article  CAS  Google Scholar 

  • Hong JH, Kim SJ, Pogaku R, and Youn KS (2007) Antitumor activities of spray-dried powders with different molecular masses fractionated from the crude protein-bound polysaccharide extract of Agaricus blazei Murill. Food Sci Biotechnol 16, 600–604.

    CAS  Google Scholar 

  • Huang Q, Zhang L, Cheung PCK, and Tan X (2006) Evaluation of sulfated α-glucans from Poria cocos mycelia as potential antitumor agent. Carbohydr Polym 64, 337–344.

    Article  CAS  Google Scholar 

  • Hwang HJ, Kim SW, Choi JW, and Yun JW (2003) Production and characterization of exopolysaccharides from submerged culture of Phellinus linteus KCTC 6190. Enzyme Microb Technol 33, 309–319.

    Article  CAS  Google Scholar 

  • Im SA, Kim KJ, and Lee CK (2006) Immunomodulatory activity of polysaccharide isolated form Salicornia herbacea. Int Immunopharmacol 6, 1451–1458.

    Article  CAS  Google Scholar 

  • Ishibashi KI, Miura NN, Adachi Y, Ohno N, and Yadomae T (2001) Relationship between solubility of grifolan, a fungal 1, 3-β-d-glucan, and production of tumor necrosis factor by macrophages in vitro. Biosci biotechnol biochem 65, 1993–2000.

    Article  CAS  Google Scholar 

  • Jung HK, Hong JH, Park SC, Park BK, Nam DH, and Kim SD (2007) Production and physicochemical characterization of β-glucan produced by Paenibacillus polymyxa JB115. Biotechnol Bioprocess Eng 12, 713–719.

    Article  CAS  Google Scholar 

  • Jung HK, Park SC, Park BK, and Hong JH (2008) Physiological activities of a β-glucan produced by Paenibacillus polymyxa. Biotechnol Lett 30, 1545–1551.

    Article  CAS  Google Scholar 

  • Kim MK, Lee IY, Ko JH, Rhee YH, and Park YH (1999) Higher intracellular levels of uridinemonophosphate under nitrogen-limited conditions enhance metabolic flux of curdlan synthesis in Agrobacterium species. Biotechnol Bioeng 62, 317–323.

    Article  CAS  Google Scholar 

  • Kimura Y, Sumiyoshi M, Suzuki T, and Sakanaka M (2006) Antitumor and antimetastatic activity of a novel water-soluble low molecular weight β-1,3-d-glucan (branch β-1,6) isolated from Aureobasidium pullulans 1A1 strain black yeast. Anticancer res, 26, 4131–4141.

    CAS  Google Scholar 

  • Kofuji K, Aoki A, Tsubaki K, Konishi M, Isobe T, and Murata Y (2012) Antioxidant activity of β-glucan. ISRN Phamaceutics. doi: 10.5402/2012/125864.

    Google Scholar 

  • Krakowski L, Krzyzanowski J, Wrona Z, and Siwicki AK (1999) The effect of nonspecific immunostimulation of pregnant mares with 1,3/1,6 glucan and levamisole on the immunoglobulin levels in colostrums, selected indices of nonspecific cellular and humoral immunity in foals in neonatal and postnatal period. Vet Immunol Immnopathol 68, 1–11.

    Article  CAS  Google Scholar 

  • Kulicke WM, Lettau AI, and Thielking H (1997) Correlation between immunological activity, molar mass, and molecular structure of different (1→3)-β-d-glucans. Carbohyd Res 297, 135–143.

    Article  CAS  Google Scholar 

  • Kupfahl C, Geginat G, and Hof H (2006) Lentinan has a stimulatory effect on innate and adaptive immunity against murin Listeria monocytihenes infection. Int Immunopharmacol 6, 686–696.

    Article  CAS  Google Scholar 

  • Lee KY, Lee MH, Chang IY, Yoon SP, Lim DY, and Jeon YJ (2006) Macrophage activation by polysaccharide fraction isolated from Salicornia herbacea. J Ethnopharmacol 103, 372–378.

    Article  CAS  Google Scholar 

  • Lee SJ, Lee YB, Hong JH, Chung JH, Kim SS, Lee WJ et al. (2005) Optimization of pine flavor microencapsulation by spray drying. Food Sci Biotechnol 14, 747–751.

    CAS  Google Scholar 

  • Leung MYK, Fung KP, and Choy YM (1997) The isolation and characterization of an immunomodulatory and antitumor polysaccharide preparation from Flammulina velutipes. Immunopharmacology 35, 255–263.

    Article  CAS  Google Scholar 

  • Leung MYK, Liu C, Koon JCM, and Fung KP (2006) Polysaccharide biological response modifiers. Immunol Lett 105, 101–114.

    Article  CAS  Google Scholar 

  • Li XM, Li XL, and Zhou AG (2007) Evaluation of antioxidant activity of the polysaccharides extracted form Lycium barbarum fruits in vitro. Eur Polym J 43, 488–497.

    Article  CAS  Google Scholar 

  • Lin X, C YJ, Li ZX, Chen O, Liu ZL, and Wang R (2003) Structure determination, apoptosis induction, and telomerase inhibition of CFP-2, a novel lichenin from Cladonia furcata. Biochimica et Biophysica Acta. 1622, 99–108.

    Article  CAS  Google Scholar 

  • Lin Y, Zhang L, Chen L, ** Y, Zeng F, ** J et al. (2004) Molecular mass and antitumor activities of sulfated derivatives of α-glucan from Poria cocos mycelia. Int J Biol Macromol 34, 231–236.

    Article  Google Scholar 

  • Liu J, Luo J, Ye H, Sun Y, Lu Z, and Zen X (2009) Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr Polym 78, 275–281.

    Article  CAS  Google Scholar 

  • Liu** F, **wei L, Kequan D, and Lianzhong A (2012) Effects of drying methods on the antioxidant activities of polysaccharides extracted from Ganoderma lucidum. Carbohydr Polym 87, 1849–1854.

    Article  Google Scholar 

  • Ljungma AG, Leanderson P, and Tagesson C (1998) β(1→2)(1→3)-d-glucan stimulated nitric oxide generation and cytokine mRNA expression in macrophages. Environ Toxicol Phar 5, 273–281.

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, and Randall RJ (1951). Protein measurement with the Folin-phenol reagents. J Biol Chem 193, 265–275.

    CAS  Google Scholar 

  • Madden JK, Dea ICM, and Steer DC (1986) Structural and rheological properties of the extracellular polysaccharides from Bacillus polymyxa. Carbohydr Polym 6, 51–73.

    Article  CAS  Google Scholar 

  • Marian R, Anusuya N, Siddhyraju P, and Manian S (2008) The antioxidant activity and free radical of Camellia sinensis (L.) O. Kuntz, Ficus bengalensis L. and Ficus racemosa L. Food Chem 107, 1000–1007.

    Article  Google Scholar 

  • Mau JL, Lin HC, and Song SF (2002) Antioxidant properties of several specialty mushrooms. Food Res Int 35, 519–526.

    Article  CAS  Google Scholar 

  • McCleary BV and Holmes MG (1985) Enzymatic quantification of (1–3),(1–4) β-glucan in barley and malt. J Inst Brew 91, 285–295.

    Article  Google Scholar 

  • Mizuno T, Hagiwara T, Nakamura T, Ito H, Shimura K, Sumiya T et al. (1990) Antitumor activity and some properties of water-soluble polysaccharides from “Himematsutake”, the fruiting body of Agaricus blazei Murill. Agric Biol Chem 54, 2889–2896.

    Article  CAS  Google Scholar 

  • Mulder M (1991) In Basic principle of membrane technology: Membrane processes (2nd ed). Kluwer Academic Publishers, USA.

    Book  Google Scholar 

  • Nair R, Melinick S, Ramachandra R, Escalon E, and Ramachandran C (2006) Mechanism of macrophage activation by (1,4)-α-d-glucan isolated from Tonospora cordifolia. Int Immunopharmacol 6, 1815–1824.

    Article  CAS  Google Scholar 

  • Ohno N, Miura NN, Chiba N, Adachi Y, and Yadomae T (1995) Comparison of the immunopharmacological activities of triple and single-helical Schizophyllan in mice. Biol Pharm Bull 18, 1242–1247.

    Article  CAS  Google Scholar 

  • Patel S and Goyal A (2012) Recent developments in mushrooms as anticancer therapeutics: a review. 3 Biotech 2, 1–15.

    Article  Google Scholar 

  • Pelicano H, Carney D, and Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updates 7, 97–110.

    Article  CAS  Google Scholar 

  • Qi HM, Zhang QB, Zhao TT, Chen R, Zhang H, and Niu XZ (2005) Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyra) in vitro. Int J Biol Macromol 37, 195–199.

    Article  CAS  Google Scholar 

  • Ratti C (2001) Hot air and freeze-drying of high value foods: a review. J Food Eng 49, 311–319.

    Article  Google Scholar 

  • Saha SK and Brewer CF (1994) Determination of the concentrations of oligosaccharides, complex type carbohydrates, and glyco-proteins using the phenol-sulfuric acid method. Carbohydr Res 254, 157–167.

    Article  CAS  Google Scholar 

  • Schepetkin IA and Quinn MT (2006). Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol, 6, 317–333.

    Article  CAS  Google Scholar 

  • Tsiapali E, Whaley S, Kalbfleisch J, Ensley HE, Browder IW, and Williams DL (2001) Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity. Free Radical Bio Med 30, 393–402.

    Article  CAS  Google Scholar 

  • Wang Y, Zhang L, Li Y, Hou X, and Zeng F (2004) Correlation of structure to antitumor activities of five derivatives of a β-glucan from Poria cocos sclerotium. Carbohydr Res 339, 2567–2574.

    Article  CAS  Google Scholar 

  • Wilson TA, Nicolosi RJ, Delaney B, Chadwell K, Moolchandani V, Kotyla T et al. (2004) Reduced and high molecular weight barley β-glucans decrease plasma total and non-HDL-cholesterol in hypercholesterolemic Syrian golden hamsters. J Nutr 134, 2617–2622.

    CAS  Google Scholar 

  • **e G, Schepetkin IA, Siemsen DW, Kirpotina LN, Wiley JA, and Quinn MT (2008). Fractionation and characterization of biologically-active polysaccharides from Artemisia tripartita. Phytochemistry, 69, 1359–1371

    Article  CAS  Google Scholar 

  • Zhang M, Cui SW, Cheung PCK and Wang Q (2007) Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Tech 18, 4–19.

    Article  Google Scholar 

  • Zhang L, Li X, Xu X, and Zeng F (2005) Correlation between antitumor activity, molecular weight, and conformation of lentinan. Carbohyd Res 340, 1515–1521.

    Article  CAS  Google Scholar 

  • Zhang P, Zhang L, and Cheng S (1999) Chemical structure and molecular weight of (1→3)-α-d-glucan from Lentinus edodes. Biosci Biotechnol Biochem 63, 1197–1202.

    Article  CAS  Google Scholar 

  • Zhang Z, Wang F, Wang X, Liu X, Hou Y, and Zhang Q (2010) Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro. Carbohydr Polym 82, 118–121.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee Kyoung Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, JH., Jung, H.K. Antioxidant and antitumor activities of β-glucan-rich exopolysaccharides with different molecular weight from Paenibacillus polymyxa JB115. J Korean Soc Appl Biol Chem 57, 105–112 (2014). https://doi.org/10.1007/s13765-013-4252-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-013-4252-9

Keywords

Navigation