Log in

Cytotoxic and neuroprotective biflavonoids from the fruit of Rhus parviflora

  • Short Communication
  • Published:
Journal of the Korean Society for Applied Biological Chemistry Submit manuscript

Abstract

Six biflavonoids, succedaneaflavanone (1), mesuaferrone B (2), rhusflavanone (3), rhusflavone (4), agathisflavone (5), and cupressuflavone (6), were isolated from the fruits of Rhus parviflora. The chemical structures of the compounds were determined based on NMR, fast atom bombardment mass spectrometry, and IR. Biflavonoid compounds were evaluated for cytotoxicity against human cancer cell lines, including human colon carcinoma (HCT-116), human breast carcinoma (MCF-7), and human cervical carcinoma (HeLa). Biflavonoids 2, 3, and 5 showed significant cytotoxicity with IC50 values of 17.25 μM (mesuaferrone B against HCT-116), 17.50 μM (rhusflavone against MCF-7), and 15.20 μM (agathisflavone against HeLa). Compound 5 showed inhibition of β-secretase activity at a 10 μM concentration. Compound 6 showed inhibition of cyclin-dependent kinases (CDK2 and CDK5) with IC50 values of 18.58 and 9.29 μM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  • Chari VM, Ilyas M, Wagner H, Neszmel Y, Chen FC, Chen LK et al. (1977) 13C-NMR spectroscopy of biflavanoids. Phytochem 16, 1273–1278.

    Article  CAS  Google Scholar 

  • Chen FC and Lin YM (1975) Succedaneaflavanone — a new 6,6″-binaringenin from Rus succedanea. Phytochem 14, 1644–1647.

    Article  CAS  Google Scholar 

  • Chen FC, Lin YM, and Wu JC (1974) Rhusflavone — a new flavanoflavone from Rus succedanea. Phytochem 13, 1571–1574.

    Article  CAS  Google Scholar 

  • de Azevedo F, Gaspar RT, Canduri F, Famera JC, and Silveira NJFD (2002) Molecular model of cyclin-dependent kinase 5 complexed with roscovitine. Biochem Bioph Res Co 287, 1154–1158.

    Article  Google Scholar 

  • Gillardon F, Schrattenholz A, and Sommer B (2005) Investigating the neuroprotective mechanism of action of a CDK5 inhibitor by phosphoproteome analysis. J Cell Biochem 95, 817–826.

    Article  CAS  Google Scholar 

  • Government of India (2006) The Ayurvedic Pharmacopoeia of India. Part I, Vol V, Government of India (GOI), India. Hanrahan JR, Chebib M, and Johnston GAR (2011) Flavonoid modulation of GABA A receptors. Brit J Pharmacol 163, 234–245.

  • Ijomone OM, Nwoha PU, Olaibi OK, Obi AU, and Alese MO (2012) Neuroprotective effects of kolaviron, a biflavonoid complex of Garcinia kola, on rats hippocampus against methamphetamine-induced neurotoxicity. Maced J Med Sci 5, 10–16.

    Google Scholar 

  • Jeon YJ, Lee HS, Yeon SW, Ko JH, An KM, Yu SW et al. (2005) Inhibitory effects of dehydrocostuslactone isolated from Saussureae radix on CDK2 activity. Korean J Pharmacogn 36, 97–101.

    CAS  Google Scholar 

  • Krauze-Baranowska M, Mardarowicz M, and Wiwart M (2002) The chemical composition of Microbiota decussata. Z Naturforsch 57, 998–1003.

    CAS  Google Scholar 

  • Lee DY, Jung L, Park, JH, Yoo KI, Chung IS, and Baek NI (2010) Cytotoxic triterpenoids from Cornus kousa fruits. Chem Nat Compd 46, 142–145.

    Article  CAS  Google Scholar 

  • Lin YM and Chen FC (1973) Rhusflavanone — a new biflavanone from Rus succedanea. Tetrahedraon Lett 48, 4747–4750.

    Article  Google Scholar 

  • Lin YM and Chen FC (1974) Agathisflavone from the drupes of Rhus succedanea. Phytochem 13, 657–658.

    Article  CAS  Google Scholar 

  • Lin YM, Chen FC, and Lee KH (1989) Hinokiflavone, a cytotoxic principle from Rhus succedanea and the cytotoxicity of the related biflavonoids. Planta Medica 55, 166–168.

    Article  CAS  Google Scholar 

  • Losiewicz MD, Carlson BA, Kaur G, Sausville EA, and Worland PJ (1994) Potent inhibition of Cdc2 kinase activity by the flavonoid L86-8275. Biochem Cell Biol Commun 201, 589–595.

    Article  CAS  Google Scholar 

  • Meijer L, Borgne A, Mulner O, Chong JPJ, Blow JJ, Inagaki N et al. (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases CDC2, CDK2 and CDK5. Eur J Biochem 243, 527–536.

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proligeration and cytotoxicity assay. J Immunol Methods 65, 55–63.

    Article  CAS  Google Scholar 

  • Murti VVS, Raman PV, and Seshadri TR (1967) Cupressuflavone, a new biflavonyl pigment. Tetrahedron 23, 397–404.

    Article  CAS  Google Scholar 

  • Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, and Tsai L (1999) Conversion of p35 to p25 deregualtes CDK5 activity and promotes neurodegeneration. Nature 402, 615–622.

    Article  CAS  Google Scholar 

  • Press JR, Shrestha KK, and Sutton DA (2000) Annotated checklist of the flowering plants of Nepal. The Natural History Museum, London, UK and Central Department of Botany, Nepal. Price BD

    Google Scholar 

  • Hughes-Davies L, and Park SJ (1995) CDK2 kinase phosphorylates serine 315 of human p53 in vitro. Oncogene 11, 73–80.

    Google Scholar 

  • Raju MS, Srinamannarayana G, and Subba Rao NVS (1976) Structure of mesuaferrone B a new biflavanone from the stamens of Meaua ferrea Linn. Tetrahedron Lett 49, 4509–4512.

    Article  Google Scholar 

  • Sasaki H, Miki K, Kinoshita K, Koyama K, Juliawaty LD, Achmad SA et al. (2010) β-Secretase (BACE-1) inhibitory effect of biflavonoids. Bioorg Med Chem Lett 20, 4558–4560.

    Article  CAS  Google Scholar 

  • Shrestha S, Park JH, Lee DY, Cho JG, Cho S, Yang HJ et al. (2012) Rhus parviflora and its biflavonoid constituent, rhusflavone, induce sleep through the positive allosteric modulation of GABAA-benzodiazepine receptors. J Ethnopharmacol 142, 213–220.

    Article  CAS  Google Scholar 

  • Svenningsen AB, Madsen KD, Liljefors T, Stafford GI, Staden JV, and Jager AK (2006) Biflavones from Rhus species with affinity for the GABAA / benzodiazepine receptor. J Ethnopharmacol 103, 276–290.

    Article  CAS  Google Scholar 

  • Talapatra B, Bhaumik A, and Talapatra SK (1993) 2-hydroxy-1,2,3-propanetricarboxylic acid 2-methyl ester, a new natural product from Rhus parviflora: a simple achiral molecule having both enantiotopic and diastereotopic hydrogens. Indian J Chem 32B, 1292–1294.

    CAS  Google Scholar 

  • Talapatra SK, Mandal SK, Bhaumik A, Mukhopadhyay S, Kar P, Patra A et al. (2001) Echinulin, a novel cyclic dipeptide carrying a triprenylated indole moiety from an anacardiaceae, a cucurbitaceae and two orchidaceae plants: detailed high resolution 2D-NMR and mass spectral studies. J Indian Chem Soc 78, 773–777.

    CAS  Google Scholar 

  • Yan R, Bienkowski MJ, Shuck ME, Miao H, Tory MC, Pauley AM et al. (1999) Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature 402, 533–537.

    Article  CAS  Google Scholar 

  • Yeon SW, Jeon YJ, Hwang EM, and Kim TY (2007) Effects of peptides derived from BACE1 catalytic domain on APP processing. Peptides 28, 838–844.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-In Baek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrestha, S., Park, JH., Lee, DY. et al. Cytotoxic and neuroprotective biflavonoids from the fruit of Rhus parviflora . J Korean Soc Appl Biol Chem 55, 557–562 (2012). https://doi.org/10.1007/s13765-012-2090-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-012-2090-9

Keywords

Navigation