Log in

Different advanced oxidation processes for the abatement of pharmaceutical compounds

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In the past two decades, with advancements in the detection technologies, researchers have shown concern over the detection of pharmaceuticals in water bodies. Pharmaceuticals are medicinal and biologically active compounds and their occurrence in environmental waters can lead to unanticipated toxic effects to both human and animal life. Significant risk from pharmaceuticals toward the aquatic life has been reportedly published. Pharmaceuticals are not completely degraded by conventional treatment facilities and at instances toxic metabolites are formed which pose a much severe threat than the parent compounds itself. Advanced oxidation processes (AOPs) utilize the powerful oxidizing potential of different radicals such as hydroxyl and sulfate to target the pharmaceutical compounds. AOPs have been found to be effective against pharmaceuticals. However, there are certain drawbacks associated with different AOPs such as generation of chemical sludge, intensive requirement of high energy, high cost considerations, and scalability issues. The present review describes the different chemical treatment technologies which are available to remove pharmaceutical compounds with special emphasis on findings from recent studies. It is also shown that different AOPs can be combined together to increase the removal of pharmaceuticals and mineralization efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

WWTPs:

Wastewater treatment plants

AOPs:

Advanced oxidation processes

•OH:

Hydroxyl radical

TOC:

Total organic carbon

PS:

Persulfate

PMS:

Peroxymonosulfate

References

  • Adityosulindro S, Barthe L, González-Labrada K, Haza UJJ, Delmas H, Julcour C (2017) Sonolysis and sono-Fenton oxidation for removal of ibuprofen in (waste) water. Ultrason Sonochem 39:889–896

    CAS  Google Scholar 

  • Ahmed MB, Zhou JL, Ngo HH, Guo W, Thomaidis NS, Xu J (2017) Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J Hazard Mater 323:274–298

    CAS  Google Scholar 

  • Almomani FA, Shawaqfah M, Bhosale RR, Kumar A (2016) Removal of emerging pharmaceuticals from wastewater by ozone-based advanced oxidation processes. Environ Prog Sustain Energy 35(4):982–995

    CAS  Google Scholar 

  • Alsager OA, Alnajrani MN, Alhazzaa O (2018) Decomposition of antibiotics by gamma irradiation: kinetics, antimicrobial activity, and real application in food matrices. Chem Eng J 338:548–556

    CAS  Google Scholar 

  • Andreozzi R, Caprio V, Marotta R, Radovnikovic A (2003) Ozonation and H2O2/UV treatment of clofibric acid in water: a kinetic investigation. J Hazard Mater 103(3):233–246

    CAS  Google Scholar 

  • Ashokkumar M, Grieser F (2005) A comparison between multibubble sonoluminescence intensity and the temperature within cavitation bubbles. J Am Chem Soc 127(15):5326–5327

    CAS  Google Scholar 

  • Ashokkumar M, Lee J, Kentish S, Grieser F (2007) Bubbles in an acoustic field: an overview. Ultrason Sonochem 14(4):470–475

    CAS  Google Scholar 

  • Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2(1):557–572

    CAS  Google Scholar 

  • Biel-Maeso M, Corada-Fernández C, Lara-Martín PA (2018) Monitoring the occurrence of pharmaceuticals in soils irrigated with reclaimed wastewater. Environ Pollut 235:312–321

    CAS  Google Scholar 

  • Bilal M, Mehmood S, Rasheed T, Iqbal HM (2020) Antibiotics traces in the aquatic environment: persistence and adverse environmental impact. Curr Opin Environ Sci Health 13:68–74

    Google Scholar 

  • Birnbaum LS, Fenton SE (2003) Cancer and developmental exposure to endocrine disruptors. Environ Health Perspect 111(4):389–394

    CAS  Google Scholar 

  • Blaser MJ (2016) Antibiotic use and its consequences for the normal microbiome. Science 352(6285):544–545

    CAS  Google Scholar 

  • Boreen AL, Arnold WA, McNeill K (2005) Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups: identification of an SO2 extrusion photoproduct. Environ Sci Technol 39(10):3630–3638

    CAS  Google Scholar 

  • Bruce GM, Pleus RC, Snyder SA (2010) Toxicological relevance of pharmaceuticals in drinking water. Environ Sci Technol 44(14):5619–5626

    CAS  Google Scholar 

  • Bu L, Zhou S, Shi Z, Deng L, Li G, Yi Q, Gao N (2016) Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways. Environ Sci Pollut Res 23(3):2848–2855

    CAS  Google Scholar 

  • Bui XT, Vo TPT, Ngo HH, Guo WS, Nguyen TT (2016) Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications. Sci Total Environ 563:1050–1067

    Google Scholar 

  • Carlson JC, Stefan MI, Parnis JM, Metcalfe CD (2015) Direct UV photolysis of selected pharmaceuticals, personal care products and endocrine disruptors in aqueous solution. Water Res 84:350–361

    CAS  Google Scholar 

  • Changotra R, Rajput H, Guin JP, Varshney L, Dhir A (2019) Hybrid coagulation, gamma irradiation and biological treatment of real pharmaceutical wastewater. Chem Eng J 370:595–605

    CAS  Google Scholar 

  • Chen D, Chu L, Wang J, Yang Z, Yang Q, Shen Y (2019) Degradation of antibiotic cephalosporin C in aqueous solution and elimination of antimicrobial activity by gamma irradiation. Chem Eng J 374:1102–1108

    CAS  Google Scholar 

  • Chowdhury P, Sarathy SR, Das S, Li J, Ray AK, Ray MB (2020) Direct UV photolysis of pharmaceutical compounds: determination of pH-dependent quantum yield and full-scale performance. Chem Eng J 380:122460

    CAS  Google Scholar 

  • Claessens M, Vanhaecke L, Wille K, Janssen CR (2013) Emerging contaminants in Belgian marine waters: single toxicant and mixture risks of pharmaceuticals. Mar Pollut Bull 71(1–2):41–50

    CAS  Google Scholar 

  • Collado N, Rodriguez-Mozaz S, Gros M, Rubirola A, Barceló D, Comas J, Rodriguez-Roda I, Buttiglieri G (2014) Pharmaceuticals occurrence in a WWTP with significant industrial contribution and its input into the river system. Environ Pollut 185:202–212

    CAS  Google Scholar 

  • Dalrymple OK, Yeh DH, Trotz MA (2007) Removing pharmaceuticals and endocrine-disrupting compounds from wastewater by photocatalysis. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 82(2):121–134

    CAS  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107(suppl 6):907–938

    CAS  Google Scholar 

  • De Bel E, Dewulf J, De Witte B, Van Langenhove H, Janssen C (2009) Influence of pH on the sonolysis of ciprofloxacin: biodegradability, ecotoxicity and antibiotic activity of its degradation products. Chemosphere 77(2):291–295

    Google Scholar 

  • de Jesus Gaffney V, Cardoso VV, Cardoso E, Teixeira AP, Martins J, Benoliel MJ, Almeida CMM (2017) Occurrence and behaviour of pharmaceutical compounds in a Portuguese wastewater treatment plant: Removal efficiency through conventional treatment processes. Environ Sci Pollut Res 24:14717–14734

    Google Scholar 

  • Deng J, Wu G, Yuan S, Zhan X, Wang W, Hu ZH (2019) Ciprofloxacin degradation in UV/chlorine advanced oxidation process: Influencing factors, mechanisms and degradation pathways. J Photochem Photobiol, A 371:151–158

    CAS  Google Scholar 

  • Deniere E, Van Hulle S, Van Langenhove H, Demeestere K (2018) Advanced oxidation of pharmaceuticals by the ozone-activated peroxymonosulfate process: the role of different oxidative species. J Hazard Mater 360:204–213

    CAS  Google Scholar 

  • Fenton HJH (1894) LXXIII.—oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910

    CAS  Google Scholar 

  • Fonseca E, Hernández F, Ibáñez M, Rico A, Pitarch E, Bijlsma L (2020) Occurrence and ecological risks of pharmaceuticals in a Mediterranean river in Eastern Spain. Environ Int 144:106004

    CAS  Google Scholar 

  • Fraiese A, Naddeo V, Uyguner-Demirel CS, Prado M, Cesaro A, Zarra T, Liu H, Belgiorno V, Ballesteros F Jr (2019) Removal of emerging contaminants in wastewater by sonolysis, photocatalysis and ozonation. Global NEST J 21:98–105

    CAS  Google Scholar 

  • García-Espinoza JD, Mijaylova-Nacheva P, Avilés-Flores M (2018) Electrochemical carbamazepine degradation: effect of the generated active chlorine, transformation pathways and toxicity. Chemosphere 192:142–151

    Google Scholar 

  • Garcia-Segura S, Ocon JD, Chong MN (2018) Electrochemical oxidation remediation of real wastewater effluents—a review. Process Saf Environ Prot 113:48–67

    CAS  Google Scholar 

  • Ghafoori S, Mowla A, Jahani R, Mehrvar M, Chan PK (2015) Sonophotolytic degradation of synthetic pharmaceutical wastewater: Statistical experimental design and modeling. J Environ Manage 150:128–137

    CAS  Google Scholar 

  • Ghosh B, Sengar A, Ahamad A Waris RF (2021) Pharmaceuticals and personal care products: occurrence, detection, risk, and removal technologies in aquatic environment. In: Contamination of Water (pp 265–284). Academic Press

  • González-Labrada K, Richard R, Andriantsiferana C, Valdés H, Jáuregui-Haza UJ, Manero MH (2020) Enhancement of ciprofloxacin degradation in aqueous system by heterogeneous catalytic ozonation. Environ Sci Pollut Res 27:1246–1255

    Google Scholar 

  • Hina H, Nafees M, Ahmad T (2021) Treatment of industrial wastewater with gamma irradiation for removal of organic load in terms of biological and chemical oxygen demand. Heliyon 7(2):e05972

    CAS  Google Scholar 

  • Hollman J, Albino Dominic J, Jackson L, Achari G (2021) Application-scale parametric evaluation of ultraviolet photolysis (UV) and UV/H 2 O 2 for the degradation of neutral pharmaceuticals in municipal wastewaters. J Environ Eng 147(12):04021061

    CAS  Google Scholar 

  • Hora PI, Novak PJ, Arnold WA (2019) Photodegradation of pharmaceutical compounds in partially nitritated wastewater during UV irradiation. Environ Sci: Water Res Technol 5(5):897–909

    CAS  Google Scholar 

  • Hu R, Zhang L, Hu J (2016) Study on the kinetics and transformation products of salicylic acid in water via ozonation. Chemosphere 153:394–404

    CAS  Google Scholar 

  • Huang H, Wu J, Ye J, Ye T, Deng J, Liang Y, Liu W (2018) Occurrence, removal, and environmental risks of pharmaceuticals in wastewater treatment plants in south China. Front Environ Sci Eng 12:1–11

    CAS  Google Scholar 

  • Ikehata K, Jodeiri Naghashkar N, Gamal El-Din M (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci Eng 28(6):353–414

    CAS  Google Scholar 

  • Indermuhle C, de Vidales MJM, Sáez C, Robles J, Cañizares P, García-Reyes JF, Molina-Díaz A, Comninellis C, Rodrigo MA (2013) Degradation of caffeine by conductive diamond electrochemical oxidation. Chemosphere 93(9):1720–1725

    CAS  Google Scholar 

  • Kanakaraju D, Glass BD, Oelgemöller M (2018) Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. J Environ Manage 219:189–207

    CAS  Google Scholar 

  • Kharel S, Stapf M, Miehe U, Ekblad M, Cimbritz M, Falås P, Nilsson J, Sehlén R, Bregendahl J, Bester K (2021) Removal of pharmaceutical metabolites in wastewater ozonation including their fate in different post-treatments. Sci Total Environ 759:143989

    CAS  Google Scholar 

  • Kibuye FA, Gall HE, Elkin KR, Ayers B, Veith TL, Miller M, Jacob S, Hayden KR, Watson JE, Elliott HA (2019) Fate of pharmaceuticals in a spray-irrigation system: From wastewater to groundwater. Sci Total Environ 654:197–208

    CAS  Google Scholar 

  • Kıdak R, Doğan Ş (2018) Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water. Ultrason Sonochem 40:131–139

    Google Scholar 

  • Kot-Wasik A, Jakimska A, Śliwka-Kaszyńska M (2016) Occurrence and seasonal variations of 25 pharmaceutical residues in wastewater and drinking water treatment plants. Environ Monit Assess 188:1–13

    CAS  Google Scholar 

  • Krishnan RY, Manikandan S, Subbaiya R, Biruntha M, Govarthanan M, Karmegam N (2021) Removal of emerging micropollutants originating from pharmaceuticals and personal care products (PPCPs) in water and wastewater by advanced oxidation processes: a review. Environ Technol Inno 23:101757

    CAS  Google Scholar 

  • Kumar R, Sarmah AK, Padhye LP (2019) Fate of pharmaceuticals and personal care products in a wastewater treatment plant with parallel secondary wastewater treatment train. J Environ Manage 233:649–659

    CAS  Google Scholar 

  • Kumar A, Omar RA, Verma N (2020) Efficient electro-oxidation of diclofenac persistent organic pollutant in wastewater using carbon film-supported Cu-rGO electrode. Chemosphere 248:126030

    CAS  Google Scholar 

  • Kümmerer K (2010) Pharmaceuticals in the environment. Annu Rev Environ Resour 35:57–75

    Google Scholar 

  • Lee HJ, Kim KY, Hamm SY, Kim M, Kim HK, Oh JE (2019) Occurrence and distribution of pharmaceutical and personal care products, artificial sweeteners, and pesticides in groundwater from an agricultural area in Korea. Sci Total Environ 659:168–176

    CAS  Google Scholar 

  • Letsinger S, Kay P, Rodríguez-Mozaz S, Villagrassa M, Barceló D, Rotchell JM (2019) Spatial and temporal occurrence of pharmaceuticals in UK estuaries. Sci Total Environ 678:74–84

    CAS  Google Scholar 

  • Liu Y, Wang S, Fu D Fu Y, (2022) Effect of bicarbonate on nitrate-induced photosensitive degradation of sulfamethoxazole under UV irradiation. Environ Technol pp1–10

  • Loos G, Scheers T, Van Eyck K, Van Schepdael A, Adams E, Van der Bruggen B, Cabooter D, Dewil R (2018) Electrochemical oxidation of key pharmaceuticals using a boron doped diamond electrode. Sep Purif Technol 195:184–191

    CAS  Google Scholar 

  • Lv J, Zhang L, Chen Y, Ye B, Han J, ** N (2019) Occurrence and distribution of pharmaceuticals in raw, finished, and drinking water from seven large river basins in China. J Water Health 17(3):477–489

    Google Scholar 

  • Ma S, Zuo X, **ong J, Ma C, Chen Z (2020) Sulfamethoxazole removal enhancement from water in high-silica ZSM-5/ozonation synchronous system with low ozone consumption. J Water Proc Eng 33:101083

    Google Scholar 

  • Madureira J, Melo R, Margaça FM, Verde SC (2022) Ionizing radiation for treatment of pharmaceutical compounds: a review. J Water Proc Eng 49:103179

    Google Scholar 

  • Magureanu M, Mandache NB, Parvulescu VI (2015) Degradation of pharmaceutical compounds in water by non-thermal plasma treatment. Water Res 81:124–136

    CAS  Google Scholar 

  • Margot J, Kienle C, Magnet A, Weil M, Rossi L, De Alencastro LF, Abegglen C, Thonney D, Chèvre N, Schärer M, Barry DA (2013) Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? Sci Total Environ 461:480–498

  • Moreau M, Hadfield J, Hughey J, Sanders F, Lapworth DJ, White D, Civil W (2019) A baseline assessment of emerging organic contaminants in New Zealand groundwater. Sci Total Environ 686:425–439

    CAS  Google Scholar 

  • Moreira NF, Orge CA, Ribeiro AR, Faria JL, Nunes OC, Pereira MFR, Silva AM (2015) Fast mineralization and detoxification of amoxicillin and diclofenac by photocatalytic ozonation and application to an urban wastewater. Water Res 87:87–96

    CAS  Google Scholar 

  • Muñoz-Morales M, Sáez C, Cañizares P, Rodrigo MA (2020) Improvement of electrochemical oxidation efficiency through combination with adsorption processes. J Environ Manage 262:110364

    Google Scholar 

  • Pereira VJ, Linden KG, Weinberg HS (2007) Evaluation of UV irradiation for photolytic and oxidative degradation of pharmaceutical compounds in water. Water Res 41(19):4413–4423

    CAS  Google Scholar 

  • Periyasamy S, Muthuchamy M (2018) Electrochemical oxidation of paracetamol in water by graphite anode: effect of pH, electrolyte concentration and current density. J Environ Chem Eng 6(6):7358–7367

    CAS  Google Scholar 

  • Phonsiri V, Choi S, Nguyen C, Tsai YL, Coss R, Kurwadkar S (2019) Monitoring occurrence and removal of selected pharmaceuticals in two different wastewater treatment plants. SN Appl Sci 1:1–11

    CAS  Google Scholar 

  • Pivetta RC, Rodrigues-Silva C, Ribeiro AR, Rath S (2020) Tracking the occurrence of psychotropic pharmaceuticals in Brazilian wastewater treatment plants and surface water, with assessment of environmental risks. Sci Total Environ 727:138661

    CAS  Google Scholar 

  • Qi Y, Mei Y, Li J, Yao T, Yang Y, Jia W, Tong X, Wu J, **n B (2019) Highly efficient microwave-assisted Fenton degradation of metacycline using pine-needle-like CuCo2O4 nanocatalyst. Chem Eng J 373:1158–1167

    CAS  Google Scholar 

  • Ragugnetti M, Adams ML, Guimarães AT, Sponchiado G, de Vasconcelos EC, de Oliveira CMR (2011) Ibuprofen genotoxicity in aquatic environment: an experimental model using Oreochromis niloticus. Water Air Soil Pollut 218(1):361–364

    CAS  Google Scholar 

  • Rao Y, Yang H, Xue D, Guo Y, Qi F, Ma J (2016) Sonolytic and sonophotolytic degradation of carbamazepine: kinetic and mechanisms. Ultrason Sonochem 32:371–379

    CAS  Google Scholar 

  • Rekhate CV, Srivastava JK (2020) Recent advances in ozone-based advanced oxidation processes for treatment of wastewater-a review. Chem Eng J Adv 3:100031

    CAS  Google Scholar 

  • Rivas FJ, Beltrán FJ, Encinas A (2012) Removal of emergent contaminants: integration of ozone and photocatalysis. J Environ Manage 100:10–15

    CAS  Google Scholar 

  • Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, Prados-Joya G, Ocampo-Pérez R (2013) Pharmaceuticals as emerging contaminants and their removal from water. Rev Chemosphere 93(7):1268–1287

    CAS  Google Scholar 

  • Rozas O, Vidal C, Baeza C, Jardim WF, Rossner A, Mansilla HD (2016) Organic micropollutants (OMPs) in natural waters: oxidation by UV/H2O2 treatment and toxicity assessment. Water Res 98:109–118

    CAS  Google Scholar 

  • Saeid S, Tolvanen P, Kumar N, Eränen K, Peltonen J, Peurla M, Mikkola JP, Franz A, Salmi T (2018) Advanced oxidation process for the removal of ibuprofen from aqueous solution: a non-catalytic and catalytic ozonation study in a semi-batch reactor. Appl Catal B 230:77–90

    CAS  Google Scholar 

  • Sánchez-Polo M, López-Peñalver J, Prados-Joya G, Ferro-García MA, Rivera-Utrilla J (2009) Gamma irradiation of pharmaceutical compounds, nitroimidazoles, as a new alternative for water treatment. Water Res 43(16):4028–4036

    Google Scholar 

  • Santos LH, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175(1–3):45–95

    CAS  Google Scholar 

  • Santos AJ, Fortunato GV, Kronka MS, Vernasqui LG, Ferreira NG, Lanza MR (2022) Electrochemical oxidation of ciprofloxacin in different aqueous matrices using synthesized boron-doped micro and nano-diamond anodes. Environ Res 204:112027

    Google Scholar 

  • Schwaiger J, Ferling H, Mallow U, Wintermayr H, Negele RD (2004) Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part I: histopathological alterations and bioaccumulation in rainbow trout. Aquat Toxicol 68(2):141–150

    CAS  Google Scholar 

  • Sétifi N, Debbache N, Sehili T, Halimi O (2019) Heterogeneous Fenton-like oxidation of naproxen using synthesized goethite-montmorillonite nanocomposite. J Photochem Photobiol, A 370:67–74

    Google Scholar 

  • Spataro F, Ademollo N, Pescatore T, Rauseo J, Patrolecco L (2019) Antibiotic residues and endocrine disrupting compounds in municipal wastewater treatment plants in Rome, Italy. Microchem J 148:634–642

    CAS  Google Scholar 

  • Subedi B, Du B, Chambliss CK, Koschorreck J, Rüdel H, Quack M, Brooks BW, Usenko S (2012) Occurrence of pharmaceuticals and personal care products in German fish tissue: a national study. Environ Sci Technol 46(16):9047–9054

    CAS  Google Scholar 

  • Suzuki N, Okazaki A, Takagi K, Serizawa I, Hirami Y, Noguchi H, Pitchaimuthu S, Terashima C, Suzuki T, Ishida N, Nakata K (2022) Complete decomposition of sulfamethoxazole during an advanced oxidation process in a simple water treatment system. Chemosphere 287:132029

    CAS  Google Scholar 

  • Thanekar P, Panda M, Gogate PR (2018) Degradation of carbamazepine using hydrodynamic cavitation combined with advanced oxidation processes. Ultrason Sonochem 40:567–576

    CAS  Google Scholar 

  • Triebskorn R, Casper H, Heyd A, Eikemper R, Köhler HR, Schwaiger J (2004) Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: part II Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicol 68(2):151–166

    CAS  Google Scholar 

  • Vane JR, Botting RM (1996) Mechanism of action of anti-inflammatory drugs. Scand J Rheumatol 25(sup102):9–21

    Google Scholar 

  • Verma M, Haritash AK (2019) Degradation of amoxicillin by Fenton and Fenton-integrated hybrid oxidation processes. J Environ Chem Eng 7(1):102886

    CAS  Google Scholar 

  • Wang J, Bai Z (2017) Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chem Eng J 312:79–98

    CAS  Google Scholar 

  • Wang J, Chu L (2016) Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: an overview. Radiat Phys Chem 125:56–64

    CAS  Google Scholar 

  • Wang J, Wang S (2018) Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem Eng J 334:1502–1517

    CAS  Google Scholar 

  • Wang J, Zhuan R (2020) Degradation of antibiotics by advanced oxidation processes: an overview. Sci Total Environ 701:135023

    CAS  Google Scholar 

  • Wang X, Wang Y, Zhao C, Zhu Y, Sun Z, Fan HJS, Hu X, Zheng H (2021) Ciprofloxacin removal by ultrasound-enhanced carbon nanotubes/permanganate process: In situ generation of free reactive manganese species via electron transfer. Water Res 202:117393

    CAS  Google Scholar 

  • Yan C, Nie M, Yang Y, Zhou J, Liu M, Baalousha M, Lead JR (2015) Effect of colloids on the occurrence, distribution and photolysis of emerging organic contaminants in wastewaters. J Hazard Mater 299:241–248

    CAS  Google Scholar 

  • Zhang R, Yang Y, Huang CH, Li N, Liu H, Zhao L, Sun P (2016) UV/H2O2 and UV/PDS treatment of trimethoprim and sulfamethoxazole in synthetic human urine: transformation products and toxicity. Environ Sci Technol 50(5):2573–2583

    CAS  Google Scholar 

  • Zhang MH, Dong H, Zhao L, Wang DX, Meng D (2019a) A review on Fenton process for organic wastewater treatment based on optimization perspective. Sci Total Environ 670:110–121

    CAS  Google Scholar 

  • Zhang N, Chen J, Fang Z, Tsang EP (2019b) Ceria accelerated nanoscale zerovalent iron assisted heterogenous Fenton oxidation of tetracycline. Chem Eng J 369:588–599

    CAS  Google Scholar 

  • Zhao Y, Kuang J, Zhang S, Li X, Wang B, Huang J, Deng S, Wang Y, Yu G (2017) Ozonation of indomethacin: kinetics, mechanisms and toxicity. J Hazard Mater 323:460–470

    CAS  Google Scholar 

  • Zhou JL, Zhang ZL, Banks E, Grover D, Jiang J (2009) Pharmaceutical residues in wastewater treatment works effluents and their impact on receiving river water. J Hazard Mater 166(2–3):655–661

    CAS  Google Scholar 

  • Zhuan R, Wang J (2019) Degradation of sulfamethoxazole by ionizing radiation: Kinetics and implications of additives. Sci Total Environ 668:67–73

    Google Scholar 

  • Ziylan-Yavas A, Ince NH (2018) Single, simultaneous and sequential applications of ultrasonic frequencies for the elimination of ibuprofen in water. Ultrason Sonochem 40:17–23

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Waris.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Editorial responsibility: Samareh Mirkia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waris, R.F., Farooqi, I.H. Different advanced oxidation processes for the abatement of pharmaceutical compounds. Int. J. Environ. Sci. Technol. 21, 2325–2338 (2024). https://doi.org/10.1007/s13762-023-05127-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-023-05127-w

Keywords

Navigation