Log in

Lemon balm and kidney bean intercrop**: the potential for incorporating AMF for sustainable agricultural production

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

This study investigated the effects of different crop** patterns and arbuscular mycorrhizal fungi (AMF) inoculation on the productivity of kidney bean and the essence quantity and quality of lemon balm. The crop** patterns included kidney bean monoculture (KBm), lemon balm monoculture (LBm), and additive intercrop** ratios of 100% lemon balm + 15% kidney bean (LB/15 KB), 100% lemon balm + 30% kidney bean (LB/30 KB), 100% lemon balm + 45% kidney bean (LB/45 KB), 100% lemon balm + 60% kidney bean (LB/60 KB), with or without AMF inoculation. Monoculture produced the highest dry matter yield of lemon balm [139.1 g m–2 (first harvest) and 121.0 g m–2 (second harvest)] and seed yield of kidney bean (1315 kg ha–1). AMF inoculation increased the dry matter yields of lemon balm by 9.6% and 10.9% (first and second harvests, respectively) and seed yield of kidney bean by 41.8%. The LB/45 KB intercrop** ratio produced the highest essence content of lemon balm [0.17% (first harvest) and 0.16% (second harvest)], which did not significantly differ from those in LB/30 KB. Interestingly, AMF inoculation enhanced essence productivity by 33.3% in the first harvest and 21.4% in the second harvest. For both harvests, the GC–MS analyses identified 19 constituents in the lemon balm essence, with the major constituents being citronella, geranial, neral, trans-caryophyllene, and caryophyllene oxide. The LB/45 KB with AMF treatment produced the highest citronella content in both harvests. Concentrations of N, P, and K in most of intercrop** patterns increased over the monocultures. We conclude that intercrop** with AMF inoculation could be an agroecological strategy for improving the essence content, yield, and quality of lemon balm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amani Machiani M, Javanmard A, Morshedloo MR, Maggi F (2018) Evaluation of yield, essence content and compositions of peppermint (Mentha piperita L.) intercropped with faba bean (Vicia faba L.). J Clean Prod 171:529–537. https://doi.org/10.1016/j.jclepro.2017.10.062

    Article  CAS  Google Scholar 

  • Amani Machiani M, Javanmard A, Habibi Machiani R, Sadeghpour A (2022) Arbuscular mycorrhizal fungi and changes in primary and secondary metabolites. Plants 11(17):2183. https://doi.org/10.3390/plants11172183

    Article  CAS  Google Scholar 

  • Amani Machiani M, Javanmard A, Morshedloo MR, Aghaee A, Maggi F (2021a) Funneliformis mosseae inoculation under water deficit stress improves the yield and phytochemical characteristics of thyme in intercrop** with soybean. Sci Rep 11:15279. https://doi.org/10.1038/s41598-021-94681-9

  • Amani Machiani M, Javanmard A, Morshedloo MR, Janmohammadi M, Maggi F (2021b) Funneliformis mosseae application improves the oil quantity and quality and eco-physiological characteristics of soybean (Glycine max L.) under water stress conditions. J Soil Sci Plant Nutr 21(4):3076–3090. https://doi.org/10.1007/s42729-021-00590-1

  • Battini F, Grønlund M, Agnolucci M, Giovannetti M, Jakobsen I (2017) Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria article. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-04959-0

    Article  CAS  Google Scholar 

  • Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1–15. https://doi.org/10.3389/fpls.2019.01068

    Article  Google Scholar 

  • Calsamiglia S, Busquet M, Cardozo PW, Castillejos L, Ferret A (2007) Invited review: essential oils as modifiers of rumen microbial fermentation. J Dairy Sci 90(6):2580–2595. https://doi.org/10.3168/jds.2006-644

    Article  CAS  Google Scholar 

  • Campion A, Oury FX, Heumez E, Rolland B (2020) Conventional versus organic farming systems: dissecting comparisons to improve cereal organic breeding strategies. Org Agric 10:63–74. https://doi.org/10.1007/s13165-019-00249-3

    Article  Google Scholar 

  • de Assis RMA, Carneiro JJ, Medeiros APR, de Carvalho AA, da Cunha Honorato A, Carneiro MAC, Bertolucci SKV, Pinto JEBP (2020) Arbuscular mycorrhizal fungi and organic manure enhance growth and accumulation of citral, total phenols, and flavonoids in Melissa officinalis L. Ind Crops Prod 158:112981. https://doi.org/10.1016/j.indcrop.2020.112981

  • da Cruz RMS, da Cruz GLS, Dragunski DC, Junior ACG, Alberton O, de Souza SGH (2019) Inoculation with arbuscular mycorrhizal fungi alters content and composition of essence of sage (Salvia officinalis) under different phosphorous levels. Aust J Crop Sci 13(10):1617–1624. https://doi.org/10.21475/ajcs.19.13.10.p1834

  • Draginic N, Jakovljevic V, Andjic M, Jeremic J, Srejovic I, Rankovic M, Tomovic M, Nikolic Turnic T, Svistunov A, Bolevich S, Milosavljevic I (2021) Melissa officinalis L. as a nutritional strategy for cardioprotection. Front Physiol. https://doi.org/10.3389/fphys.2021.661778

  • Duchene O, Vian JF, Celette F (2017) Intercrop** with legume for agroecological crop** systems: complementarity and facilitation processes and the importance of soil microorganisms. A Review Agric Ecosyst Environ 240:148–161. https://doi.org/10.1016/j.agee.2017.02.019

    Article  Google Scholar 

  • Eulenstein F, Tauschke M, Behrendt A, Monk J, Schindler U, Lana MA, Monk S (2017) The application of mycorrhizal fungi and organic fertilisers in horticultural potting soils to improve water use efficiency of crops. Horticulturae 3(1):1–8. https://doi.org/10.3390/horticulturae3010008

    Article  Google Scholar 

  • Faridvand S, Rezaei-Chiyaneh E, Battaglia ML, Gitari HI, Raza MA, Siddique KHM (2022) Application of bio and chemical fertilizers improves yield, and essential oil quantity and quality of Moldavian balm (Dracocephalum moldavica L.) intercropped with mung bean (Vigna radiata L.). Food Energy Secur 11:319. https://doi.org/10.1002/fes3.319

  • Fotohi Chiyaneh S, Rezaei-Chiyaneh E, Amirnia R, Keshavarz Afshar R, Siddique KHM (2022) Changes in the essential oil, fixed oil constituents, and phenolic compounds of ajowan and fenugreek in intercrop** with pea affected by fertilizer sources. Ind Crops Prod 178:114587. https://doi.org/10.1016/j.indcrop.2022.114587

  • Ghaderimokri L, Rezaei-Chiyaneh E, Ghiyasi M, Gheshlaghi M, Battaglia ML, Siddique KHM (2022) Application of humic acid and biofertilizers changes oil and phenolic compounds of fennel and fenugreek in intercrop** systems. Sci Rep 12:5946. https://doi.org/10.1038/s41598-022-09645-4

    Article  CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84:489–500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

  • Hashem A, Kumar A, Al-Dbass AM, Alqarawi AA, Al-Arjani ABF, Singh G, Farooq M (2019) Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi J Biol Sci 26(3):614–624. https://doi.org/10.1016/j.sjbs.2018.11.005

    Article  CAS  Google Scholar 

  • Hassiotis CN, Ntana F, Lazari DM, Poulios S, Vlachonasios KE (2014) Environmental and developmental factors affect essence production and quality of Lavandula angustifolia during flowering period. Ind Crops Prod 62:359–366. https://doi.org/10.1016/j.indcrop.2014.08.048

    Article  CAS  Google Scholar 

  • Ilić ZS, Milenković L, Tmušić N, Stanojević L, Stanojević J, Cvetković D (2022) Essential oils content, composition and antioxidant activity of lemon balm, mint and sweet basil from Serbia. LWT 153:112210. https://doi.org/10.1016/j.lwt.2021.112210

  • Jones JB (1972) Micronutrients in Agriculture. Society America, Madison, Soil Sci

    Google Scholar 

  • Kaur S, Suseela V (2020) Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome. Metabolites 10:335–365. https://doi.org/10.3390/metabo10080335

    Article  CAS  Google Scholar 

  • Li YL, ** ZX, Luo GY, Chen C, Sun ZS, Wang XY (2022) Effects of arbuscular mycorrhizal fungi inoculation on non-structural carbohydrate contents and C:N:P stoichiometry of Heptacodium miconioides under drought stress. J Appl Ecol 33:963–971. https://doi.org/10.13287/j.1001-9332.202204.014

  • Maitra S, Hossain A, Brestic M, Skalicky M, Ondrisik P, Gitari H, Brahmachari K, Shankar T, Bhadra P, Palai JB, Jena J, Bhattacharya U, Duvvada SK, Lalichetti S, Sairam M (2021) Intercrop**-A low input agricultural strategy for food and environmental security. Agronomy 11:343–371. https://doi.org/10.3390/agronomy11020343

    Article  CAS  Google Scholar 

  • Martin-Guay MO, Paquette A, Dupras J, Rivest D (2018) The new green revolution: sustainable intensification of agriculture by intercrop**. Sci Total Environ 615:767–772. https://doi.org/10.1016/j.scitotenv.2017.10.024

    Article  CAS  Google Scholar 

  • Miraj S, Rafieian-Kopaei M, Kiani S (2017) Melissa officinalis L: a review study with an antioxidant prospective. J Evid Based Complementary Altern Med 22(3):385–394. https://doi.org/10.1177/2156587216663433

    Article  CAS  Google Scholar 

  • Mohammadzadeh V, Rezaei-Chiyaneh E, Mahdavikia H, Rahimi A, Gheshlaghi M, Leonardo Battaglia M, Harrison MT (2022) Effect of intercrop** and bio-fertilizer application on the nutrient uptake and productivity of mung bean and marjoram. Land 11:1825. https://doi.org/10.3390/land11101825

    Article  Google Scholar 

  • Mohasseli V, Farbood F, Moradi A (2020) Antioxidant defense and metabolic responses of lemon balm (Melissa officinalis L.) to Fe-nano-particles under reduced irrigation regimes. Ind Crops Prod 149:112338. https://doi.org/10.1016/j.indcrop.2020.112338

  • Namazi Y, Rezaei-Chiyaneh E, Siavash Moghaddam S, Leonardo Battaglia M (2022) The effects of microbial inoculation and intercrop** on yield and active ingredients of savory (Satureja hortensis L.) intercropped with common bean (Phaseolus vulgaris L.). Int J Environ Sci Technol https://doi.org/10.1007/s13762-022-04024-y

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161. https://doi.org/10.1016/S0007-1536(70)80110-3

    Article  Google Scholar 

  • Plaza-Bonilla D, Nogué-Serra I, Raffaillac D, Canero-Martinez C, Justes E (2018) Carbon footprint of crop** systems with grain legumes and cover crops: a case-study in SW France. Agric Syst 167:92–102. https://doi.org/10.1016/j.agsy.2018.09.004

    Article  Google Scholar 

  • Rezaei-Chiyaneh E, Battaglia ML, Sadeghpour A, Shokrani F, Nasab ADM, Raza MA, von Cossel M (2021a) Optimizing intercrop** systems of black cumin (Nigella sativa L.) and fenugreek (Trigonella foenum-graecum L.) through inoculation with bacteria and mycorrhizal fungi. Adv Sustain Syst 2000269:1–14. https://doi.org/10.1002/adsu.202000269

    Article  CAS  Google Scholar 

  • Rezaei-Chiyaneh E, Jalilian J, Seyyedi SM, Barin M, Ebrahimian E, Keshavarz Afshar R (2021b) Isabgol (Plantago ovata) and lentil (Lens culinaris) intercrop response to arbuscular mycorrhizal fungi inoculation. Biol Agric Hortic 37:125–140. https://doi.org/10.1080/01448765.2021.1903556

    Article  Google Scholar 

  • Rezaei-Chiyaneh E, Mahdavikia H, Battaglia ML, Thomason WE, Caruso G (2021c) Intercrop** and fertilizer type impact seed productivity and secondary metabolites of dragon’s head and fenugreek. Sci Hortic (Amsterdam) 287:110277. https://doi.org/10.1016/j.scienta.2021.110277

  • Saad AM, Sitohy MZ, Ahmed AI, Rabie NA, Amin SA, Aboelenin SM, Soliman MM, El-Saadony MT (2021) Biochemical and functional characterization of kidney bean protein alcalase-hydrolysates and their preservative action on stored chicken meat. Molecules 26(15):4690. https://doi.org/10.3390/molecules26154690

    Article  CAS  Google Scholar 

  • Senoo K, Kaneko M, Taguchi R, Murata J, Santasup C, Tanaka A, Obata H (2002) Enhanced growth and nodule occupancy of red kidney bean and soybean inoculated with soil aggregate-based inoculant. Soil Sci Plant Nutr 48(2):251–259. https://doi.org/10.1080/00380768.2002.10409198

    Article  Google Scholar 

  • Strzemski M, Dzida K, Dresler S, Sowa I, Kurzepa J, Szymczak G, Wójciak M (2021) Nitrogen fertilisation decreases the yield of bioactive compounds in Carlina acaulis L. grown in the field. Ind Crops Prod 170:113698. https://doi.org/10.1016/j.indcrop.2021.113698

  • Tandon HLS, Cescas MP, Tyner EH (1968) An acid-free vanadate-molybdate reagent for the determination of total phosphorus in soils. Soil Sci Soc Am J 32:48–51. https://doi.org/10.2136/sssaj1968.03615995003200010012x

    Article  CAS  Google Scholar 

  • Thokchom SD, Gupta S, Kapoor R (2020) Arbuscular mycorrhiza augments essential oil composition and antioxidant properties of Ocimum tenuiflorum L. A popular green tea additive. Ind Crops Prod 153:112418. https://doi.org/10.1016/j.indcrop.2020.112418

  • Weisany W, Raei Y, Salmasi SZ, Sohrabi Y, Ghassemi-Golezani K (2016) Arbuscular mycorrhizal fungi induced changes in rhizosphere, essential oil and mineral nutrients uptake in dill/common bean intercrop** system. Ann Appl Biol 169(3):384–397. https://doi.org/10.1111/aab.12309

    Article  CAS  Google Scholar 

  • Zamani F, Amirnia R, Rezaei-Chiyaneh E, Gheshlaghi M, von Cossel M, Siddique KHM (2022) Optimizing essential oil, fatty acid profiles, and phenolic compounds of dragon’s head (Lallemantia iberica) intercropped with chickpea (Cicer arietinum L.) with biofertilizer inoculation under rainfed conditions in a semi-arid region. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2022.2105320

  • Zhao Y, Cartabia A, Lalaymia I, Declerck S (2022) Arbuscular mycorrhizal fungi and production of secondary metabolites in medicinal plants. Mycorrhiza 32:221–256. https://doi.org/10.1007/s00572-022-01079-0

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Daniel Plaza-Bonilla is a Ramón y Cajal fellow (RYC-2018–024536-I), co-funded by MICIN/AEI/10.13039/501100011033 and European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Rezaei-Chiyaneh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any author.

Additional information

Editorial responsibility: Maryam Shabani.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qoreishi, E., Rezaei-Chiyaneh, E., Mahdavikia, H. et al. Lemon balm and kidney bean intercrop**: the potential for incorporating AMF for sustainable agricultural production. Int. J. Environ. Sci. Technol. 20, 6835–6848 (2023). https://doi.org/10.1007/s13762-023-04917-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-023-04917-6

Keywords

Navigation