Log in

Development of autonomous multi-sensor ocean monitoring instrument designed for complex archipelagic waters

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

This paper presents the development of low-cost multi-sensor ocean monitoring instrument to measure oceanographic parameters. The aim of this instrument is to fulfil the monitoring specifically for archipelagic countries with complex waters, and it allows for both vertical and horizontal measurements. The platform contains removable sensors, rechargeable batteries, satellite system, and micro-controller. Inside the instrument, the probes are primarily to measure acidity level (pH), water temperature (°C), salinity (ppt), conductivity (ms/cm), turbidity (NTU), and depth (m). Furthermore, data are stored in an internal SD card and simultaneously transmitted to a website portal data via satellite after it goes to the surface water. For validation, several tests had been conducted in controlled laboratory conditions and field setting, in which the test results had shown satisfactory results. In the future, the system will be upgraded by adding extra units of antenna, chlorophyll sensors, and a power changer made from thrusters. Currently, this instrument is operational and available for use in archipelagic countries with dynamics depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data used are openly available, and relevant websites are mentioned.

References

  • Albaladejo C, Soto F, Torres R, Sánchez P, López JA (2012) A low-cost sensor buoy system for monitoring shallow marine environments. Sensors (switzerland) 12(7):9613–9634. https://doi.org/10.3390/s120709613

    Article  Google Scholar 

  • Auraen J (2019) Low-cost CTD instrument arduino based CTD for autonomous measurement platform. Report, pp.75

  • Callies U, Kreus M, Petersen W, Voynova YG (2021) On using lagrangian drift simulations to aid interpretation of in situ monitoring data. Front Mar Sci 8:1–15. https://doi.org/10.3389/fmars.2021.666653

    Article  Google Scholar 

  • Carlson DF, Fürsterling A, Vesterled L, Skovby M, Pedersen SS, Melvad C, Rysgaard S (2019) An affordable and portable autonomous surface vehicle with obstacle avoidance for coastal ocean monitoring. HardwareX 5:e00059. https://doi.org/10.1016/j.ohx.2019.e00059

    Article  Google Scholar 

  • Faizal I, Purba NP, Valino DA, Sidik MJ, Abimanyu A, Bratasena T, Ramdhani F, Wulandari A (2021) A new oceanographic data portal: Padjadjaran oceanographic data centre (PODC). J Segara 17(3):155. https://doi.org/10.15578/segara.v17i3.10289

    Article  Google Scholar 

  • Gerin R, Zennaro M, Rainone M, Pietrosemoli E, Crise A, Ogs S, Division O, Beirut V (2018) On the design of a sustainable ocean drifter for develo** countries. EAI Endorsed Trans Internet Things 4(13):1–9

    Article  Google Scholar 

  • Khan AMA, Nasution AM, Purba NP, Rizal A, Zahidah, Hamdani H, Dewanti LP, Junianto, Nurruhwati I, Sahidin A, Supriyadi D, Herawati H, Apriliani IM, Ridwan M, Gray TS, Jiang M, Arief H, Mill AC, Polunin NVC (2020) Oceanographic characteristics at fish aggregating device sites for tuna pole-and-line fishery in eastern Indonesia. Fish Res 225:105471. https://doi.org/10.1016/j.fishres.2019.105471

    Article  Google Scholar 

  • Kröger S, Parker ER, Metcalfe JD, Greenwood N, Forster RM, Sivyer DB, Pearce DJ (2009) Sensors for observing ecosystem status. Ocean Sci 5(4):523–535. https://doi.org/10.5194/os-5-523-2009

    Article  Google Scholar 

  • Lo Bue N, Best MMR, Embriaco D, Abeysirigunawardena D, Beranzoli L, Dewey RK, Favali P, Feng M, Heesemann M, Leijala U, Ó’Conchubhair D, Scherwath M, Scoccimarro E, Wernberg T (2021) The importance of marine research infrastructures in capturing processes and impacts of extreme events. Front Mar Sci 8:1–14. https://doi.org/10.3389/fmars.2021.626668

    Article  Google Scholar 

  • Lockridge O, Norgren RB Jr, Johnson RC, Blake TA (2016) Naturally occurring genetic variants of human acetylcholinesterase and butyrylcholinesterase and their potential impact on the risk of toxicity from cholinesterase inhibitors. Chem Res Toxicol 29(9):1381–1392

    Article  CAS  Google Scholar 

  • Marcelli M, Piermattei V, Madonia A, Mainardi U (2014) Design and application of new low-cost instruments for marine environmental research. Sensors (switzerland) 14(12):23348–23364. https://doi.org/10.3390/s141223348

    Article  Google Scholar 

  • Ormston R, Spencer L, Barnard M, Snape D (2014) The foundations of qualitative research. Qual Res Pract A Guide Soc Sci Stud Res 2(7):52–55

    Google Scholar 

  • Pearlman J, Bushnell M, Coppola L, Karstensen J, Buttigieg PL, Pearlman F, Simpson P, Barbier M, Muller-Karger FE, Munoz-Mas C, Pissierssens P, Chandler C, Hermes J, Heslop E, Jenkyns R, Achterberg EP, Bensi M, Bittig HC, Blandin J, Whoriskey F (2019) Evolving and sustaining ocean best practices and standards for the next decade. Front Mar Sci 6:1–19. https://doi.org/10.3389/fmars.2019.00277

    Article  Google Scholar 

  • Purba NP, Pranowo WS (2015) Dinamika oseanografi, Deskripsi Karakteristik Massa Air dan Sirkulasi Air Laut, 1st edn. Unpad Press, Sumedang, p 276

    Google Scholar 

  • Purba NP, Martasuganda MK, Adrianto D (2020) Utilization of oceanographic data in supporting the national defense and security analysis in terms of handling the illegal fishing in Indonesia. J Pertahanan 6(1):12–19

    Article  Google Scholar 

  • Purba Harahap S, Prihadi DJ, Faizal I, Mulyani PG, Fitriadi CA, Pangestu IF, Atmoko PD, Alfath A, Sitio JT (2017) Pengembangan instrumen lagrangian gps drifter combined (gerned) untuk observasi laut. J Kelautan Nas 12(3):109–116. https://doi.org/10.15578/jkn.v12i3.6323

    Article  Google Scholar 

  • Révelard A, Tintoré J, Verron J, Bahurel P, Barth JA, Belbéoch M, Benveniste J, Bonnefond P, Chassignet EP, Cravatte S, Davidson F, deYoung B, Heupel M, Heslop E, Hörstmann C, Karstensen J, Le Traon PY, Marques M, McLean C, Williams B (2022) ocean integration: the needs and challenges of effective coordination within the ocean observing system. Front Mar Sci 8:1–15. https://doi.org/10.3389/fmars.2021.737671

    Article  Google Scholar 

  • Roemmich D, Alford MH, Claustre H, Johnson KS, King B, Moum J, Oke PR, Owens WB, Pouliquen S, Purkey S, Scanderbeg M, Suga T, Wijffels SE, Zilberman N, Bakker D, Baringer MO, Belbeoch M, Bittig HC, Boss E, Yasuda I (2019) On the future of argo: a global, full-depth, multi-disciplinary array. Front Mar Sci 6:1–28. https://doi.org/10.3389/fmars.2019.00439

    Article  Google Scholar 

  • Roemmich D, Boebel O, Freeland H, King B, LeTraon P-Y, Molinari R, Owens WB, Riser S, Send U, Takeuchi K, & Wijffels S (1998) On the design and implementation of argo: a global array of profiling floats.

  • Schmid C, Molinari RL, Sabina R, Daneshzadeh YH, **a X, Forteza E, Yang H (2007) The real-time data management of system for argo profiling float observations. J Atmos Oceanic Tech 24(9):1608–1628. https://doi.org/10.1175/JTECH2070.1

    Article  Google Scholar 

  • Siregar SN, Sari LP, Purba NP, Pranowo WS, Syamsuddin ML (2017) Pertukaran massa air di Laut Jawa terhadap periodisitas monsun dan Arlindo pada tahun. Depik 6(1):44–59. https://doi.org/10.13170/depik.6.1.5523

    Article  Google Scholar 

  • Thomson RE, Emery WJ (2014) Data analysis in physical oceanography. Elsevier, Amsterdam

    Google Scholar 

  • Weller RA, Baker DJ, Glackin MM, Roberts SJ, Schmitt RW, Twigg ES, Vimont DJ (2019) The challenge of sustaining ocean observations. Front Mar Sci 6:1–18. https://doi.org/10.3389/fmars.2019.00105

    Article  Google Scholar 

  • Whitt C, Pearlman J, Polagye B, Caimi F, Muller-Karger F, Cop** A, Spence H, Madhusudhana S, Kirkwood W, Grosjean L, Fiaz BM, Singh S, Singh S, Manalang D, Gupta A. Sen, Maguer A, Buck JJH, Marouchos A, Atmanand MA, Khalsa SJ (2020) Future vision for autonomous ocean observations. Front Mar Sci 7:697. https://doi.org/10.3389/fmars.2020.00697

    Article  Google Scholar 

  • Wong APS, Wijffels SE, Riser SC, Pouliquen S, Hosoda S, Roemmich D, Gilson J, Johnson GC, Martini K, Murphy DJ, Scanderbeg M, Bhaskar TVSU, Buck JJH, Merceur F, Carval T, Maze G, Cabanes C, André X, Poffa N, Park HM (2020) Argo data 1999–2019: two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats. Front Mar Sci 7:1–23. https://doi.org/10.3389/fmars.2020.00700

    Article  Google Scholar 

Download references

Acknowledgements

Development of the ARHEA was funded by AIS (Archipelagic Island State) Grant 2020–2021. This research is a collaboration between MEAL UNPAD, MOCEAN, and PT Robomarine Indonesia. We would like to thank the KOMITMEN Research Group. Arnisa, Sarah, Adli Attamimi, and Jaya Kelvin had been tremendously helpful in offering scientific and outreach guidance throughout the project.

Funding

The research leading to these results received funding from United Nations Development Programme (UNDP) under 2020–2021 Archipelagic Island State Innovation Challenges for Joint Research in Climate Change Mitigation and Adaptation or Good Maritime Governance Areas in Indonesia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Purba.

Ethics declarations

Conflict of interest

The author declares that they do not have conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Editorial responsibility: Maryam shabani.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purba, N.P., Faizal, I., Valino, D.A. et al. Development of autonomous multi-sensor ocean monitoring instrument designed for complex archipelagic waters. Int. J. Environ. Sci. Technol. 20, 11451–11460 (2023). https://doi.org/10.1007/s13762-023-04772-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-023-04772-5

Keywords

Navigation