Log in

Improving the performance of artificial intelligence models using the rotation forest technique for landslide susceptibility map**

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Landslide susceptibility assessment has always been the focus of landslide spatial prediction research. In the present study, Muchuan County was selected as the study area, and four well-known machine learning models were adopted, namely, rotation forest (RF), J48 decision tree (J48), alternating decision tree (ADTree) and random forest (RaF). They and their ensembles (RF-J48, RF-ADTree and RF-RaF) were applied to landslide spatial prediction in Muchuan County. Eleven landslide conditioning factors, including plan curvature, profile curvature, slope angle, elevation, topographic wetness index, land use, normalized difference vegetation index, soil, lithology, distance to roads and distance to rivers, were established. In addition, 279 landslide datasets were compiled and randomly divided into 195 landslide training datasets and 84 landslide verification datasets. The contributions of the eleven conditioning factors were analyzed by J48, ADTree, and RaF models, respectively. The results show that lithology, slope angle, elevation, land use, soil, and distance to roads were the six principal landslide conditioning factors. Then, the Jenks natural break method was used to divide the landslide susceptibility maps into five grades. In addition, the accuracy of the above six models was verified by implementing the receiver operating characteristic curve and area under the receiver operating characteristic curve. The RF-RaF model achieved the best performance, and the rest were ranked as follows: RF-ADTree model, RaF model, RF-J48 model, ADTree model and J48 model. The results could provide scientific references for local natural resource departments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anzola J, Cuartas K, Tarazona G (2015) Classification methodology of research topics based in decision trees: J48 andrandomtree. Int J Appl Eng Res 10:19413

    Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility map** in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31

    Article  Google Scholar 

  • Balakrishnan A, Medikonda J, Namboothiri PK, Manik M, Natarajan A (2022) Role of wearable sensors with machine learning approaches in gait analysis for Parkinson’s disease assessment: a review. Eng Sci 19:5–19. https://doi.org/10.30919/es8e622

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  • Canoglu MC, Aksoy H, Ercanoglu M (2018) Integrated approach for determining spatio-temporal variations in the hydrodynamic factors as a contributing parameter in landslide susceptibility assessments. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-018-1337-z

    Article  Google Scholar 

  • Cenitta D, Arjunan RV, Prema KV (2022) Ischemic heart disease multiple imputation technique using machine learning algorithm. Eng Sci 19:262–272. https://doi.org/10.30919/es8d681

    Article  Google Scholar 

  • Chang Z, Catani F, Huang F, Liu G, Meena SR, Huang J, Zhou C (2022) Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors. J Rock Mech Geotech Eng. https://doi.org/10.1016/j.jrmge.2022.07.009

    Article  Google Scholar 

  • Chen X, Chen W (2021) GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods. CATENA 196:104833. https://doi.org/10.1016/j.catena.2020.104833

    Article  Google Scholar 

  • Chen L, Lan C, Xu B, Bi K (2021a) Progress on material characterization methods under big data environment. Adv Compos Hybrid Mater 4:235–247. https://doi.org/10.1007/s42114-021-00229-w

    Article  Google Scholar 

  • Chen W, Lei X, Chakrabortty R, Chandra Pal S, Sahana M, Janizadeh S (2021b) Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility. J Environ Manage 284:112015. https://doi.org/10.1016/j.jenvman.2021.112015

    Article  Google Scholar 

  • Chen Y, Chen W, Chandra Pal S, Saha A, Chowdhuri I, Adeli B, Janizadeh S, Dineva AA, Wang X, Mosavi A (2021c) Evaluation efficiency of hybrid deep learning algorithms with neural network, decision tree and boosting methods for predicting groundwater potential. Geocarto Int. https://doi.org/10.1080/10106049.2021.1920635

    Article  Google Scholar 

  • Chen Y, Chen W, Janizadeh S, Bhunia GS, Bera A, Pham QB, Linh NTT, Balogun A-L, Wang X (2021d) Deep learning and boosting framework for pi** erosion susceptibility modeling: spatial evaluation of agricultural areas in the semi-arid region. Geocarto Int. https://doi.org/10.1080/10106049.2021.1892212

    Article  Google Scholar 

  • Chu L, Wang L-J, Jiang J, Liu X, Sawada K, Zhang J (2018) Comparison of landslide susceptibility maps using random forest and multivariate adaptive regression spline models in combination with catchment map units. Geosci J. https://doi.org/10.1007/s12303-018-0038-8

    Article  Google Scholar 

  • Cordeira JM, Stock J, Dettinger MD, Young AM, Kalansky JF, Ralph FM (2019) A 142-year climatology of northern California landslides and atmospheric rivers. Bull Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-18-0158.1

    Article  Google Scholar 

  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Masuda T, Nishino K (2008) GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility map**. Environ Geol 54:311–324. https://doi.org/10.1007/s00254-007-0818-3

    Article  CAS  Google Scholar 

  • Dang V-H, Dieu TB, Tran X-L, Hoang N-D (2018) Enhancing the accuracy of rainfall-induced landslide prediction along mountain roads with a GIS-based random forest classifier. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-018-1273-y

    Article  Google Scholar 

  • Deng C, Guo MZ (2011) A new co-training-style random forest for computer aided diagnosis. J Intell Inf Syst 36:253–281. https://doi.org/10.1007/s10844-009-0105-8

    Article  Google Scholar 

  • Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF (2013) Landslide susceptibility map** using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat Hazards 65:135–165. https://doi.org/10.1007/s11069-012-0347-6

    Article  Google Scholar 

  • Dhakal AS, Sidle RC (2004) Distributed simulations of landslides for different rainfall conditions. Hydrol Process 18:757–776. https://doi.org/10.1002/hyp.1365

    Article  Google Scholar 

  • Diva IH, Irwanto U, Nizam K, Annur L, Sekarjati D, Putra BG, Safitri Y, Giovandi EA, Nofrizal AY, Hanif M, Abe A (2018) Investigation Volcanic Land Form and Map** Landslide Potential at Mount Talang. Sumatra Journal of Disaster, Geography and Geography Education; Vol 2 No 1 (2018): Sumatra Journal of Disaster, Geography and Geography Education Volume 2 Number 1–June 2018 : Disaster. https://doi.org/10.24036/sjdgge.v2i1.130.

  • Du P, Samat A, Waske B, Liu S, Li Z (2015) Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS J Photogramm Remote Sens 105:38–53. https://doi.org/10.1016/j.isprsjprs.2015.03.002

    Article  Google Scholar 

  • ESRI. 2014. ArcGIS desktop: release 10.2 Redlands, CA: Environmental Systems Research Institute.

  • Fiorucci F, Ardizzone F, Mondini AC, Viero A, Guzzetti F (2019) Visual interpretation of stereoscopic NDVI satellite images to map rainfall-induced landslides. Landslides 16:165–174. https://doi.org/10.1007/s10346-018-1069-y

    Article  Google Scholar 

  • Freund Y, Mason L (2002) The alternating decision tree learning algorithm.

  • Guo Z, Shi Y, Huang F, Fan X, Huang J (2021) Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management. Geosci Front 12:101249. https://doi.org/10.1016/j.gsf.2021.101249

    Article  Google Scholar 

  • Hu T, Fan X, Wang S, Guo Z, Liu A, Huang F (2020) Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology. Bull Geol Sci Technol 39:113–121

    Google Scholar 

  • Huang F, Cao Z, Jiang S-H, Zhou C, Huang J, Guo Z (2020) Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model. Landslides 17:2919–2930

    Article  Google Scholar 

  • Huang F, Tao S, Chang Z, Huang J, Fan X, Jiang S-H, Li W (2021) Efficient and automatic extraction of slope units based on multi-scale segmentation method for landslide assessments. Landslides 18:3715–3731

    Article  Google Scholar 

  • Huang F, Chen J, Liu W, Huang J, Hong H, Chen W (2022a) Regional rainfall-induced landslide hazard warning based on landslide susceptibility map** and a critical rainfall threshold. Geomorphology. https://doi.org/10.1016/j.geomorph.2022.108236

    Article  Google Scholar 

  • Huang F, Pan L, Fan X, Jiang S-H, Huang J, Zhou C (2022b) The uncertainty of landslide susceptibility prediction modeling: suitability of linear conditioning factors. Bull Eng Geol Environ 81:182. https://doi.org/10.1007/s10064-022-02672-5

    Article  Google Scholar 

  • Huang F, Tao S, Li D, Lian Z, Catani F, Huang J, Li K, Zhang C (2022c) Landslide susceptibility prediction considering neighborhood characteristics of landslide spatial datasets and hydrological slope units using remote sensing and GIS technologies. Remote Sens 14:4436

    Article  Google Scholar 

  • Huang F, Ye Z, Zhou X, Huang J, Zhou C (2022d) Landslide susceptibility prediction using an incremental learning Bayesian Network model considering the continuously updated landslide inventories. Bull Eng Geol Environ 81:1–19

    Article  Google Scholar 

  • Jaafari A, Najafi A, Pourghasemi HR, Rezaeian J, Sattarian A (2014) GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. Int J Environ Sci Technol 11:909–926. https://doi.org/10.1007/s13762-013-0464-0

    Article  Google Scholar 

  • Jia X, Lu A, Cai H, Ma Y (2021) An analytical method for solving gravity-induced stresses in slope. Appl Math Model 98:665–679. https://doi.org/10.1016/j.apm.2021.06.004

    Article  Google Scholar 

  • Joshi SC (2020) Knowledge based data boosting exposition on CNT-engineered carbon composites for machine learning. Adv Compos Hybrid Mater 3:354–364. https://doi.org/10.1007/s42114-020-00171-3

    Article  CAS  Google Scholar 

  • Kamath G, Mishra B, Tiwari S, Bhardwaj A, Marar SS, Soni S, Chauhan R, Anjappa SB (2022) Experimental and statistical evaluation of drilling induced damages in glass fiber reinforced polymer composites–Taguchi integrated supervised machine learning approach. Eng Sci 19:312–318. https://doi.org/10.30919/es8d733

    Article  CAS  Google Scholar 

  • Kang, K. & Michalak, J. 2018. Enhanced version of AdaBoostM1 with J48 Tree learning method. ar**v:1802.03522

  • Khamar M, Eftekhari M (2018) Multi-manifold based rotation forest for classification. Appl Soft Comput 68:626–635

    Article  Google Scholar 

  • Kornejady A, Pourghasemi HR, Afzali SF (2019) Presentation of RFFR new ensemble model for landslide susceptibility assessment in Iran. In: Pradhan SP, Vishal V, Singh TN (eds) Landslides: theory, practice and modelling. Springer International Publishing, Cham, pp 123–143

    Chapter  Google Scholar 

  • Krishna R, Prema KV, Gaonkar R (2022) Areca nut disease dataset creation and validation using machine learning techniques based on weather parameters. Eng Sci 19:205–214. https://doi.org/10.30919/es8d712

    Article  Google Scholar 

  • Kulatilake PHSW, Ge Y (2014) Investigation of stability of the critical rock blocks that initiated the Jiweishan landslide in China. Geotech Geol Eng 32:1291–1315. https://doi.org/10.1007/s10706-014-9806-z

    Article  Google Scholar 

  • Lasota T, Telec Z, Trawiński B, Trawiński G (2012) Investigation of rotation forest ensemble method using genetic fuzzy systems for a regression problem. In: Pan J-S, Chen S-M, Nguyen NT (eds) Intelligent information and database systems. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 393–402

    Chapter  Google Scholar 

  • Lee S, Lee M-J, Lee S (2018) Spatial prediction of urban landslide susceptibility based on topographic factors using boosted trees. Environ Earth Sci 77:656. https://doi.org/10.1007/s12665-018-7778-7

    Article  Google Scholar 

  • Lei X, Chen W, Avand M, Janizadeh S, Kariminejad N, Shahabi H, Costache R, Shahabi H, Shirzadi A, Mosavi A (2020a) GIS-based machine learning algorithms for gully erosion susceptibility map** in a semi-arid region of Iran. Remote Sensing 12:2478

    Article  Google Scholar 

  • Lei X, Chen W, Pham BT (2020b) Performance evaluation of GIS-based artificial intelligence approaches for landslide susceptibility modeling and spatial patterns analysis. ISPRS Int J Geo Inf 9:443

    Article  Google Scholar 

  • Li W, Fan X, Huang F, Chen W, Hong H, Huang J, Guo Z (2020) Uncertainties analysis of collapse susceptibility prediction based on remote sensing and GIS: influences of different data-based models and connections between collapses and environmental factors. Remote Sens 12:4134

    Article  Google Scholar 

  • Li Y, Chen W, Rezaie F, Rahmati O, Davoudi Moghaddam D, Tiefenbacher J, Panahi M, Lee M-J, Kulakowski D, Tien Bui D, Lee S (2021) Debris flows modeling using geo-environmental factors: develo** hybridized deep-learning algorithms. Geocarto Int. https://doi.org/10.1080/10106049.2021.1912194

    Article  Google Scholar 

  • Liu L, Yin K, Wang J, Zhang J, Huang F (2016) Dynamic evaluation of regional landslide hazard due to rainfall: a case study in Wanzhou central district, Three Gorges Reservoir. Chin J Rock Mech Eng 35:558–569

    Google Scholar 

  • Liu W, Song X, Huang F, Hu L (2019) Experimental study on the disintegration of granite residual soil under the combined influence of wetting–drying cycles and acid rain. Geomat Nat Hazards Risk 10:1912–1927

    Article  Google Scholar 

  • Losasso L, Rinaldi C, Alberico D, Sdao F (2017) Landslide risk analysis along strategic touristic roads in Basilicata (Southern Italy) using the modified RHRS 2.0 method. In: Gervasi O, Murgante B, Misra S, Borruso G, Torre CM, Rocha AMAC, Taniar D, Apduhan BO, Stankova E, Cuzzocrea A (eds) Computational science and its applications – ICCSA 2017. Springer International Publishing, Cham, pp 761–776

    Chapter  Google Scholar 

  • Mandal S, Mondal S (2019) Artificial neural network (ANN) model and landslide susceptibility. In: Mandal S, Mondal S (eds) Statistical approaches for landslide susceptibility assessment and prediction. Springer International Publishing, Cham, pp 123–133

    Google Scholar 

  • Mantas CJ, Castellano JG, Moral-García S, Abellán J (2018) A comparison of random forest based algorithms: random credal random forest versus oblique random forest. Soft Comput. https://doi.org/10.1007/s00500-018-3628-5

    Article  Google Scholar 

  • Marino P, Peres DJ, Cancelliere A, Greco R, Bogaard TA (2020) Soil moisture information can improve shallow landslide forecasting using the hydrometeorological threshold approach. Landslides. https://doi.org/10.1007/s10346-020-01420-8

    Article  Google Scholar 

  • Merghadi A, Yunus AP, Dou J, Whiteley J, ThaiPham B, Bui DT, Avtar R, Abderrahmane B (2020) Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth Sci Rev 207:103225. https://doi.org/10.1016/j.earscirev.2020.103225

    Article  Google Scholar 

  • Mohan N, Kalam SA, Mahaveerakannan R, Shah M, Yadav JS, Sharma V, Naik PS, Narasimha DB (2022) Statistical evaluation of machining parameters in drilling of glass laminate aluminum reinforced epoxy composites using machine learning model. Eng Sci. https://doi.org/10.30919/es8e716

    Article  Google Scholar 

  • Mondal S, Mandal S (2018) Landslide susceptibility map** of Darjeeling Himalaya, India using index of entropy (IOE) model. Appl Geomat. https://doi.org/10.1007/s12518-018-0248-9

    Article  Google Scholar 

  • Moral-García S, Mantas CJ, Castellano JG, Abellán J (2019) Ensemble of classifier chains and Credal C4.5 for solving multi-label classification. Prog Artif Intell. https://doi.org/10.1007/s13748-018-00171-x

    Article  Google Scholar 

  • Myronidis D, Papageorgiou C, Theophanous S (2016) Landslide susceptibility map** based on landslide history and analytic hierarchy process (AHP). Nat Hazards 81:245–263. https://doi.org/10.1007/s11069-015-2075-1

    Article  Google Scholar 

  • Pardo C, Diez-Pastor JF, García-Osorio C, Rodríguez JJ (2013) Rotation forests for regression. Appl Math Comput 219:9914–9924. https://doi.org/10.1016/j.amc.2013.03.139

    Article  Google Scholar 

  • Pfahringer B, Holmes G, Kirkby R (2001) Optimizing the induction of alternating decision trees. In: Cheung D, Williams GJ, Li Q (eds) Advances in knowledge discovery and data mining. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 477–487

    Chapter  Google Scholar 

  • Pham BT, Tien Bui D, Dholakia MB, Prakash I, Pham HV (2016) A comparative study of least square support vector machines and multiclass alternating decision trees for spatial prediction of rainfall-induced landslides in a tropical cyclones area. Geotech Geol Eng 34:1807–1824. https://doi.org/10.1007/s10706-016-9990-0

    Article  Google Scholar 

  • Pham BT, Tien Bui D, Prakash I (2017) Landslide susceptibility assessment using bagging ensemble based alternating decision trees, logistic regression and J48 decision trees methods: a comparative study. Geotech Geol Eng 35:2597–2611. https://doi.org/10.1007/s10706-017-0264-2

    Article  Google Scholar 

  • Pham BT, Tien Bui D, Prakash I (2018) Bagging based Support Vector Machines for spatial prediction of landslides. Environ Earth Sci 77:146. https://doi.org/10.1007/s12665-018-7268-y

    Article  Google Scholar 

  • Pham BT, Prakash I, Singh SK, Shirzadi A, Shahabi H, Bui DT (2019) Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: hybrid machine learning approaches. CATENA 175:203–218

    Article  Google Scholar 

  • Polykretis C, Chalkias C, Ferentinou M (2017) Adaptive neuro-fuzzy inference system (ANFIS) modeling for landslide susceptibility assessment in a Mediterranean hilly area. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-017-1125-1

    Article  Google Scholar 

  • Pourghasemi HR, Gayen A, Panahi M, Rezaie F, Blaschke T (2019) Multi-hazard probability assessment and map** in Iran. Sci Total Environ 692:556–571. https://doi.org/10.1016/j.scitotenv.2019.07.203

    Article  CAS  Google Scholar 

  • Pradhan B (2010) Landslide susceptibility map** of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J Indian Soc Remote Sens 38:301–320. https://doi.org/10.1007/s12524-010-0020-z

    Article  Google Scholar 

  • Raja NB, Çiçek I, Türkoğlu N, Aydin O, Kawasaki A (2017) Landslide susceptibility map** of the Sera River Basin using logistic regression model. Nat Hazards 85:1323–1346. https://doi.org/10.1007/s11069-016-2591-7

    Article  Google Scholar 

  • Ramakrishnan D, Singh TN, Verma AK, Gulati A, Tiwari KC (2013) Soft computing and GIS for landslide susceptibility assessment in Tawaghat area, Kumaon Himalaya, India. Nat Hazards 65:315–330. https://doi.org/10.1007/s11069-012-0365-4

    Article  Google Scholar 

  • Rane PR, Vincent S (2022) Landslide susceptibility map** using machine learning algorithms for Nainital, India. Eng Sci 17:142–155. https://doi.org/10.30919/es8d600

    Article  Google Scholar 

  • Ren F, Wu X, Zhang K, Niu R (2015) Application of wavelet analysis and a particle swarm-optimized support vector machine to predict the displacement of the Shu** landslide in the Three Gorges, China. Environ Earth Sci 73:4791–4804. https://doi.org/10.1007/s12665-014-3764-x

    Article  Google Scholar 

  • Rodriguez JJ, Kuncheva LI, Alonso CJ (2006) Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell 28:1619–1630. https://doi.org/10.1109/TPAMI.2006.211

    Article  Google Scholar 

  • Sahana M, Sajjad H (2017) Evaluating effectiveness of frequency ratio, fuzzy logic and logistic regression models in assessing landslide susceptibility: a case from Rudraprayag district, India. J Mt Sci 14:2150–2167. https://doi.org/10.1007/s11629-017-4404-1

    Article  Google Scholar 

  • Sahu S, Mehtre BM (2015) Network intrusion detection system using J48 Decision Tree. In: 2015 International conference on advances in computing, communications and informatics (ICACCI), pp 2023–2026

  • Sheng T, Chen Q (2017) An altitude based landslide and debris flow detection method for a single mountain remote sensing image. In: Zhao Y, Kong X, Taubman D (eds) Image and graphics. Springer International Publishing, Cham, pp 601–610

    Chapter  Google Scholar 

  • Shetty DK, Rodrigues LLR, Shetty AK, Nair G (2022) Machine learning based predictors of cardiovascular disease among young adults. Eng Sci 17:292–302. https://doi.org/10.30919/es8d627

    Article  Google Scholar 

  • Sinha S, Badola HK, Chhetri B, Gaira KS, Lepcha J, Dhyani PP (2018) Effect of altitude and climate in sha** the forest compositions of Singalila National Park in Khangchendzonga Landscape, Eastern Himalaya, India. J Asia Pac Biodivers 11:267–275. https://doi.org/10.1016/j.japb.2018.01.012

    Article  Google Scholar 

  • Sok HK, Ooi MP-L, Kuang YC (2015) Sparse alternating decision tree. Pattern Recogn Lett 60–61:57–64. https://doi.org/10.1016/j.patrec.2015.03.002

    Article  Google Scholar 

  • Sridhar B, Rao PJ, Narasimha Rao G, Duvvuru R, Anusha C, Sanyasi Naidu D, Srinivas E, Sridevi T, Madhuri M, Padmini Y (2019) Identification of landslide hazard zones along the Bheemili Beach Road, Visakhapatnam District, A.P. In: Rao S, Rao KN, Kubo S (eds) Proceedings of international conference on remote sensing for disaster management. Springer International Publishing, Cham, pp 515–522

    Chapter  Google Scholar 

  • Sun W, Tian Y, Mu X, Zhai J, Gao P, Zhao G (2017) Loess landslide inventory map based on GF-1 satellite imagery. Remote Sens. https://doi.org/10.3390/rs9040314

    Article  Google Scholar 

  • Tang Z, Ma J, Peng H, Wang S, Wei J (2017) Spatiotemporal changes of vegetation and their responses to temperature and precipitation in upper Shiyang river basin. Adv Space Res 60:969–979. https://doi.org/10.1016/j.asr.2017.05.033

    Article  Google Scholar 

  • Tehrany MS, Kumar L (2018) The application of a Dempster–Shafer-based evidential belief function in flood susceptibility map** and comparison with frequency ratio and logistic regression methods. Environ Earth Sci 77:490. https://doi.org/10.1007/s12665-018-7667-0

    Article  Google Scholar 

  • Tien Bui D, Ho TC, Revhaug I, Pradhan B, Nguyen DB (2014) Landslide susceptibility map** along the national road 32 of Vietnam using GIS-based J48 decision tree classifier and its ensembles. In: Buchroithner M, Prechtel N, Burghardt D (eds) Cartography from pole to pole: selected contributions to the XXVIth international conference of the ICA, Dresden 2013. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 303–317

    Chapter  Google Scholar 

  • Tsige M, Ruiz J, del Río IA, Jiménez-Díaz A (2016) Modeling of landslides in Valles Marineris, Mars, and implications for initiation mechanism. Earth Moon Planet 118:15–26. https://doi.org/10.1007/s11038-016-9488-z

    Article  CAS  Google Scholar 

  • van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30:399–419. https://doi.org/10.1023/B:NHAZ.0000007097.42735.9e

    Article  Google Scholar 

  • Watakabe T, Matsushi Y (2019) Lithological controls on hydrological processes that trigger shallow landslides: Observations from granite and hornfels hillslopes in Hiroshima, Japan. CATENA 180:55–68. https://doi.org/10.1016/j.catena.2019.04.010

    Article  Google Scholar 

  • Wettstein W, Schmid B (1999) Conservation of arthropod diversity in montane wetlands: effect of altitude, habitat quality and habitat fragmentation on butterflies and grasshoppers. J Appl Ecol 36:363–373. https://doi.org/10.1046/j.1365-2664.1999.00404.x

    Article  Google Scholar 

  • Wu Q, Tang H, Ma X, Wu Y, Hu X, Wang L, Criss R, Yuan Y, Xu Y (2019) Identification of movement characteristics and causal factors of the Shu** landslide based on monitored displacements. Bull Eng Geol Environ 78:2093–2106. https://doi.org/10.1007/s10064-018-1237-2

    Article  Google Scholar 

  • **e J, Uchimura T, Chen P, Liu J, **e C, Shen Q (2019) A relationship between displacement and tilting angle of the slope surface in shallow landslides. Landslides 16:1243–1251. https://doi.org/10.1007/s10346-019-01135-5

    Article  Google Scholar 

  • Xu Q, Liu H, Ran J, Li W, Sun X (2016) Field monitoring of groundwater responses to heavy rainfalls and the early warning of the Kualiangzi landslide in Sichuan Basin, southwestern China. Landslides 13:1555–1570. https://doi.org/10.1007/s10346-016-0717-3

    Article  Google Scholar 

  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM (2016) Erratum to: Landslide susceptibility map** using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 13:1315–1318. https://doi.org/10.1007/s10346-015-0667-1

    Article  Google Scholar 

  • Zhang M, Liu J (2010) Controlling factors of loess landslides in western China. Environ Earth Sci 59:1671–1680. https://doi.org/10.1007/s12665-009-0149-7

    Article  Google Scholar 

  • Zhang C-X, Zhang J-S (2008) RotBoost: a technique for combining Rotation Forest and AdaBoost. Pattern Recogn Lett 29:1524–1536. https://doi.org/10.1016/j.patrec.2008.03.006

    Article  Google Scholar 

  • Zheng H, Zhang C, Wang Y, Sladek J, Sladek V (2016) A meshfree local RBF collocation method for anti-plane transverse elastic wave propagation analysis in 2D phononic crystals. J Comput Phys 305:997–1014. https://doi.org/10.1016/j.jcp.2015.10.020

    Article  CAS  Google Scholar 

  • Zheng H, Yang Z, Zhang C, Tyrer M (2018) A local radial basis function collocation method for band structure computation of phononic crystals with scatterers of arbitrary geometry. Appl Math Model 60:447–459. https://doi.org/10.1016/j.apm.2018.03.023

    Article  Google Scholar 

  • Zhu L, Wang G, Huang F, Li Y, Chen W, Hong H (2022) Landslide Susceptibility Prediction Using Sparse Feature Extraction and Machine Learning Models Based on GIS and Remote Sensing. IEEE Geosci Remote Sens Lett 19:1–5. https://doi.org/10.1109/LGRS.2021.3054029

    Article  Google Scholar 

  • Zhuang J, Peng J, Wang G, Javed I, Wang Y, Li W (2018) Distribution and characteristics of landslide in Loess Plateau: a case study in Shaanxi province. Eng Geol 236:89–96. https://doi.org/10.1016/j.enggeo.2017.03.001

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 41807285) and Science and Technique Project of Shaanxi Nuclear Industry Engineering Survey Institute Co., Ltd. (Grant No. 61210301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Huang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Editorial responsibility: Jun Yang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Huang, F., Fan, X. et al. Improving the performance of artificial intelligence models using the rotation forest technique for landslide susceptibility map**. Int. J. Environ. Sci. Technol. 20, 11239–11254 (2023). https://doi.org/10.1007/s13762-022-04665-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-022-04665-z

Keywords

Navigation