Log in

Sound absorption characteristics of aluminosilicate fibers

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In recent years, rapid economic development and urbanization have led to severe environmental problems such as noise pollution. The use of fibrous porous materials is considered to be an effective method to control noise pollution. This study investigates the morphological and acoustical characteristics of fibrous materials made of aluminosilicate fibers (ASFs). To this end, morphological and structural properties of samples were investigated using field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) method. The effect of sample thickness and air gap was experimentally studied using the impedance tube method in the frequency range of 63–6300 Hz. The frequency-dependent acoustic behavior of the samples was also predicted using the empirical models of Delany-Bazley (D-B), Garai-Pompoli (G-P), and the proposed revised models of D-B and G-P. The XRD patterns showed that the main phases of the ASF are quartz, tridymite, and mullite. The BET analysis confirmed that the samples are classified as macro-porous. It was found that with the increase of the sample thickness sound absorption coefficient (SAC) increases at low frequencies. The averages of SACs for samples with thicknesses of 10 and 25 mm at low frequencies were 0.17 and 0.32, respectively. These values for the middle frequencies were 0.78 and 0.80, and for high frequencies were 0.83 and 0.84, respectively. Additionally, it was observed that with the increase of air gap depth, SAC enhances at low-frequency bands, and the SAC peak shifts toward the lower frequencies. Additionally, excellent agreement was observed between the experimentally measured SACs and those predicted by the revised D-B and G-P models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdi DD, Monazzam M, Taban E, Putra A, Golbabaei F, Khadem M (2021) Sound absorption performance of natural fiber composite from chrome shave and coffee silver skin. Appl Acoust 182:108264. https://doi.org/10.1016/j.apacoust.2021.108264

    Article  Google Scholar 

  • Abedkarimi R, Hasani H, Soltani P, Talebi Z (2020) Experimental and computational analysis of acoustic characteristics of warp-knitted spacer fabrics. J Text Inst 111(4):491–498

    Article  Google Scholar 

  • Ahmed S, Gadelmoula A (2020) Industrial noise monitoring using noise map** technique: a case study on a concrete block-making factory. Int J Environ Sci Technol, 1–12

  • ASTM S (1990) Standard test method for sound absorption and sound absorption coefficients by the reverberation room method. C423–90a

  • Astrauskas T, Picó R, Sánchez-Morcillo V, Grubliauskas R (2021) Acoustic panels based on recycled paper sludge and lime composites. Int J Environ Sci Technol 1–8

  • Berardi U, Iannace G (2015) Acoustic characterization of natural fibers for sound absorption applications. Build Environ 94:840–852. https://doi.org/10.1016/j.buildenv.2015.05.029

    Article  Google Scholar 

  • Berardi U, Iannace G (2017) Predicting the sound absorption of natural materials: best-fit inverse laws for the acoustic impedance and the propagation constant. Appl Acoust 115:131–138. https://doi.org/10.1016/j.apacoust.2016.08.012

    Article  Google Scholar 

  • Bies D, Hansen CH (1980) Flow resistance information for acoustical design. Appl Acoust 13(5):357–391

    Article  Google Scholar 

  • Brooke DC, Umnova O, Leclaire P, Dupont T (2020) Acoustic metamaterial for low frequency sound absorption in linear and nonlinear regimes. J Sound Vib 485:115585

    Article  Google Scholar 

  • Cao L, Fu Q, Si Y, Ding B, Yu J (2018) Porous materials for sound absorption. Compos Commun 10:25–35. https://doi.org/10.1016/j.coco.2018.05.001

    Article  Google Scholar 

  • Cox T, d’Antonio P (2016) Acoustic absorbers and diffusers: theory, design and application. Crc Press

    Book  Google Scholar 

  • Cuiyun D, Guang C, **nbang X, Peisheng L (2012) Sound absorption characteristics of a high-temperature sintering porous ceramic material. Appl Acoust 73(9):865–871. https://doi.org/10.1016/j.apacoust.2012.01.004

    Article  Google Scholar 

  • Davar H, Taghavirad S, Mohammadi M (2014) The investigation of effects of silica on the environment and prevention of release of the silica particles with simulation of gas-solid flow in a gas cyclone. Res J Chem Environ 18(11):28–30

    Google Scholar 

  • Delany ME, Bazley EN (1970) Acoustical properties of fibrous absorbent materials. Appl Acoust 3(2):105–116. https://doi.org/10.1016/0003-682X(70)90031-9

    Article  Google Scholar 

  • Dunne R, Desai D, Sadiku R (2017) A review of the factors that influence sound absorption and the available empirical models for fibrous materials. Acoust Aust 45(2):453–469. https://doi.org/10.1007/s40857-017-0097-4

    Article  Google Scholar 

  • Everest FA, Pohlmann KC (2015). Master handbook of acoustics

  • Francis CD, Barber JR (2013) A framework for understanding noise impacts on wildlife: an urgent conservation priority. Front Ecol Environ 11(6):305–313. https://doi.org/10.1890/120183

    Article  Google Scholar 

  • Garai M, Pompoli F (2005) A simple empirical model of polyester fibre materials for acoustical applications. Appl Acoust 66(12):1383–1398. https://doi.org/10.1016/j.apacoust.2005.04.008

    Article  Google Scholar 

  • Ghermezgoli ZM, Moezzi M, Yekrang J, Rafat SA, Soltani P, Barez F (2021) Sound absorption and thermal insulation characteristics of fabrics made of pure and crossbred sheep waste wool. J Build Eng 35:102060

    Article  Google Scholar 

  • Hajimohammadi M, Soltani P, Semnani D, Taban E, Fashandi H (2022) Nonwoven fabric coated with core-shell and hollow nanofiber membranes for efficient sound absorption in buildings. Build Environ. https://doi.org/10.1016/j.buildenv.2022.108887

    Article  Google Scholar 

  • Hassani P, Soltani P, Ghane M, Zarrebini M (2021) Porous resin-bonded recycled denim composite as an efficient sound-absorbing material. Appl Acoust 173:107710. https://doi.org/10.1016/j.apacoust.2020.107710

    Article  Google Scholar 

  • He M, Perrot C, Guilleminot J, Leroy P, Jacqus G (2018) Multiscale prediction of acoustic properties for glass wools: computational study and experimental validation. J Acoust Soc Am 143(6):3283–3299

    Article  CAS  Google Scholar 

  • Herr AE, Canumalla S, Pangborn RN (1995) Thermal fatigue behavior of squeeze cast, discontinuous alumina-silicate fiber-reinforced aluminum alloy (A356) composite. Mater Sci Eng A 200(1):181–191. https://doi.org/10.1016/0921-5093(95)07004-4

    Article  Google Scholar 

  • Institution BS (1993) Acoustics. Materials for acoustical applications. Determination of airflow resistance. British Standards Institution

    Google Scholar 

  • International standard ISO 10534–2 (1998) Acoustics-determination of sound absorption coefficient and impedance in impedance tubes—part 2: transfer-function method

  • Jeon JH, Yang SS, Kang YJ (2020) Estimation of sound absorption coefficient of layered fibrous material using artificial neural networks. Appl Acoust 169:107476

    Article  Google Scholar 

  • Jiang R, Liu H, Yang L, Sun X, Cheng H (2018) Mechanical properties of aluminosilicate fiber heat-treated from 800 °C to 1400 °C: effects of phase transition, grain growth and defects. Mater Charact 138:120–126. https://doi.org/10.1016/j.matchar.2018.01.047

    Article  CAS  Google Scholar 

  • Karimi F, Soltani P, Zarrebini M, Hassanpour A (2022) Acoustic and thermal performance of polypropylene nonwoven fabrics for insulation in buildings. J Build Eng 50:104125. https://doi.org/10.1016/j.jobe.2022.104125

    Article  Google Scholar 

  • Lim Z, Putra A, Nor M, Yaakob M (2018) Sound absorption performance of natural kenaf fibres. Acoust Aust 130:107–114

    Article  Google Scholar 

  • Maderuelo-Sanz R (2021) Characterizing and modelling the sound absorption of the cellulose acetate fibers coming from cigarette butts. J Environ Health Sci Eng 19(1):1075–1086

    Article  CAS  Google Scholar 

  • Maderuelo-Sanz R, Acedo-Fuentes P, García-Cobos FJ, Sánchez-Delgado FJ, Mota-López MI, Meneses-Rodríguez JM (2021) The recycling of surgical face masks as sound porous absorbers: preliminary evaluation. Sci Total Environ 786:147461

    Article  CAS  Google Scholar 

  • Maxim LD, Utell MJ (2014) Aluminosilicate fibers. In: Wexler P (ed) Encyclopedia of toxicology, 3rd edn. Academic Press, Oxford, pp 156–160

    Chapter  Google Scholar 

  • Mehrzad S, Taban E, Soltani P, Samaei SE, Khavanin A (2022) Sugarcane bagasse waste fibers as novel thermal insulation and sound-absorbing materials for application in sustainable buildings. Build Environ 211:108753

    Article  Google Scholar 

  • Miskinis K, Dikavicius V, Buska A, Banionis K (2018) Influence of EPS, mineral wool and plaster layers on sound and thermal insulation of a wall: a case study. Appl Acoust 137:62–68

    Article  Google Scholar 

  • Mohammadi MJ, Charkhloo E, Geravandi S, Takdastan A, Rahimi S, Yari AR et al (2017) Road traffic noise in urban environments in Ahvaz city, Iran. Fresenius Environ Bull 26(4):2746–2751

    Google Scholar 

  • Moretti E, Belloni E, Agosti F (2016) Innovative mineral fiber insulation panels for buildings: thermal and acoustic characterization. Appl Energy 169:421–432. https://doi.org/10.1016/j.apenergy.2016.02.048

    Article  Google Scholar 

  • Sakthivel S (2021) Studies on influence of bonding methods on sound absorption characteristic of polyester/cotton recycled nonwoven fabrics. Appl Acoust 174:107749

    Article  Google Scholar 

  • Samaei E, Berardi U, Taban E, Soltani P, Mohammad Mousavi S (2021a) Natural fibro-granular composite as a novel sustainable sound-absorbing material. Appl Acoust 181:108157. https://doi.org/10.1016/j.apacoust.2021.108157

    Article  Google Scholar 

  • Samaei SE, Berardi U, Soltani P, Taban E (2021b) Experimental and modeling investigation of the acoustic behavior of sustainable kenaf/yucca composites. Appl Acoust 183:108332. https://doi.org/10.1016/j.apacoust.2021.108332

    Article  Google Scholar 

  • Samaei SE, Berardi U, Taban E, Soltani P, Mousavi SM (2021c) Natural fibro-granular composite as a novel sustainable sound-absorbing material. Appl Acoust 181:108157

    Article  Google Scholar 

  • Soltani P, Norouzi M (2020) Prediction of the sound absorption behavior of nonwoven fabrics: computational study and experimental validation. J Sound Vib 485:115607

    Article  Google Scholar 

  • Soltani P, Taban E, Faridan M, Samaei SE, Amininasab S (2020) Experimental and computational investigation of sound absorption performance of sustainable porous material: Yucca Gloriosa fiber. Appl Acoust 157:106999

    Article  Google Scholar 

  • Sun Z, Shen Z, Ma S, Zhang X (2015) Sound absorption application of fiberglass recycled from waste printed circuit boards. Mater Struct 48(1):387–392

    Article  CAS  Google Scholar 

  • Taban E, Khavanin A, Faridan M, Samaei SE, Samimi K, Rashidi R (2020) Comparison of acoustic absorption characteristics of coir and date palm fibers: experimental and analytical study of green composites. Int J Environ Sci Technol 17:39–48. https://doi.org/10.1007/s13762-019-02304-8

    Article  Google Scholar 

  • Taban E, Amininasab S, Berardi U, Abdi DD, Samaei SE (2021a) Use of date palm waste fibers as sound absorption material. J Build Eng 41:102752

    Article  Google Scholar 

  • Taban E, Amininasab S, Soltani P, Berardi U, Abdi DD, Samaei SE (2021b) Use of date palm waste fibers as sound absorption material. J Build Eng 41:102752. https://doi.org/10.1016/j.jobe.2021.102752

    Article  Google Scholar 

  • Taban E, Valipour F, Abdi DD, Amininasab S (2021c) Mathematical and experimental investigation of sound absorption behavior of sustainable kenaf fiber at low frequency. Int J Environ Sci Technol 18(9):2765–2780. https://doi.org/10.1007/s13762-020-03024-0

    Article  Google Scholar 

  • Tang X, Yan X (2017) Acoustic energy absorption properties of fibrous materials: a review. Compos A Appl Sci Manuf 101:360–380. https://doi.org/10.1016/j.compositesa.2017.07.002

    Article  CAS  Google Scholar 

  • Tsai K-T, Lin M-D, Lin Y-H (2019) Noise exposure assessment and prevention around high-speed rail. Int J Environ Sci Technol 16(8):4833–4842

    Article  Google Scholar 

  • Wang Y, Zhang C, Ren L, Ichchou M, Galland M-A, Bareille O (2013) Influences of rice hull in polyurethane foam on its sound absorption characteristics. Polym Compos 34(11):1847–1855. https://doi.org/10.1002/pc.22590

    Article  CAS  Google Scholar 

  • Wang F, Chen Z, Wu C, Yang Y (2019) Prediction on sound insulation properties of ultrafine glass wool mats with artificial neural networks. Appl Acoust 146:164–171

    Article  Google Scholar 

  • Yang T, Saati F, Horoshenkov KV, **ong X, Yang K, Mishra R et al (2019) Study on the sound absorption behavior of multi-component polyester nonwovens: experimental and numerical methods. Text Res J 89(16):3342–3361

    Article  CAS  Google Scholar 

  • Yang T, Hu L, **ong X, Petrů M, Noman MT, Mishra R et al (2020) Sound absorption properties of natural fibers: a review. Sustainability. https://doi.org/10.3390/su12208477

    Article  Google Scholar 

  • Zhang S, Li Y, Zheng Z (2018) Effect of physiochemical structure on energy absorption properties of plant fibers reinforced composites: dielectric, thermal insulation, and sound absorption properties. Compos Commun 10:163–167

    Article  Google Scholar 

  • Zhao X-D, Yu Y-J, Wu Y-J (2016) Improving low-frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plate combined with Helmholtz resonators. Appl Acoust 114:92–98. https://doi.org/10.1016/j.apacoust.2016.07.013

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Mashhad University of medical sciences for providing the necessary laboratory facilities for this work. The authors would like to appreciate the financial support provided by the university under grant no. of 991156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Taban.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflict of interest.

Additional information

Editorial responsibility: Maryam Shabani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, P., Mirzaei, R., Samaei, E. et al. Sound absorption characteristics of aluminosilicate fibers. Int. J. Environ. Sci. Technol. 19, 10245–10256 (2022). https://doi.org/10.1007/s13762-022-04229-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-022-04229-1

Keywords

Navigation