Log in

Efficient adsorption of uranyl ions from aqueous solution by Gd2O3 and Gd2O3–MgO composite materials

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In this work, pure gadolinium oxide (Gd2O3) and mixed gadolinium oxide (Gd2O3)–magnesium oxide (MgO) composites were synthesized by simple hydrothermal method and calcination treatment. Two kinds of materials were used to remove uranyl ions from aqueous solution and characterized the structure and morphology by means of XRD, FT-IR, SEM, EDS and XPS. MgO was introduced into Gd2O3 material, which effectively avoided the agglomeration of Gd2O3 material and increased the adsorption capacity. The effects of different initial pH, initial uranium concentration and contact time on the adsorption performance of UO22+ were investigated by static adsorption experiments. At 25 °C, the maximum adsorption capacities of Gd2O3 and Gd2O3–MgO for UO22+ were 473.43 mg·g−1 and 812.41 mg·g−1, respectively. The adsorption process was fitted well with the Langmuir isotherm model and pseudo-second-order kinetic model. The thermodynamic fitting parameters (ΔG < 0, ΔS > 0 and ΔH > 0) indicated that the adsorption properties are endothermic and spontaneous. Gd2O3–MgO has a relatively large specific surface area and high adsorption capacity, but its stability and regeneration ability are reduced after three times of reuse. The possible adsorption mechanism is derived from XPS and FT-IR analysis, which mainly involves the complexation of –OH and U(VI) generated by the hydration on the surface of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  • Abu-Dief AM, Essawy AA, Diab AK et al (2020) Facile synthesis and characterization of novel Gd2O3/CdO binary mixed oxide nanocomposites of highly photocatalytic activity for wastewater remediation under solar lumination. J Phys Chem Solids 148:109666

    Article  Google Scholar 

  • Ashrafi F, Firouzzare M, Ahmadi SJ et al (2019) Preparation and modification of forcespun polypropylene nanofibers for adsorption of uranium (VI) from simulated seawater. Ecotoxicol Environ Saf 186:109746

    Article  CAS  Google Scholar 

  • Bayramoglu G, Yakup M (2016) MCM-41 silica particles grafted with polyacrylonitrile: modification in to amidoxime and carboxyl groups for enhanced uranium removal from aqueous medium. Microporous and Mesoporous Mater 226:117–124

    Article  CAS  Google Scholar 

  • Chowdhury AH, Chowdhury IH, Naskar MK et al (2015) A facile synthesis of grainy rod-like porous MgO. Mater Lett 158:190–193

    Article  Google Scholar 

  • Chowdhury IH, Chowdhury AH, Bose P et al (2016) Effect of anion type on the synthesis of mesoporous nanostructured MgO, and its excellent adsorption capacity for the removal of toxic heavy metal ions from water. RSC Adv 6(8):6038–6047

    Article  CAS  Google Scholar 

  • Dhananjaya N, Bhushana N, Sharma S et al (2014) Hydrothermal synthesis of Gd2O3:Eu3+ nanophosphors: effect of surfactant on structural and luminescence properties. J Alloy Compd 587:755–762

    Article  CAS  Google Scholar 

  • Fei H, Liu X, Li Z et al (2015) Synthesis of manganese coordination polymer microspheres for lithium-ion batteries with good cycling performance. Electrochim Acta 174:1088–1095

    Article  CAS  Google Scholar 

  • Han Y, Zhang S, Shen Na et al (2016) MOF-derived porous NiO nanoparticle architecture for high performance supercapacitors. Mater Lett 188:1–4

    Article  CAS  Google Scholar 

  • Hu B, Wang H, Liu R et al (2021) Highly efficient U(VI) capture by amidoxime/carbon nitride composites: Evidence of EXAFS and modeling. Chemosphere 274:129743

    Article  CAS  Google Scholar 

  • Huang Z, Wang N, Li X et al (2020) Calcination of layered double hydroxide membrane with enhanced nanofiltration performance. J Ind Eng Chem 89:368–374

    Article  CAS  Google Scholar 

  • Ilton ES, Bagus PS (2011) XPS determination of uranium oxidations states. Surface Interface Anal 43(13):275–286

    Article  Google Scholar 

  • Juibari NM, Tarighi S (2020) Metal–organic framework-derived nanocomposite metal-oxides with enhanced catalytic performance in thermal decomposition of ammonium perchlorate. J Alloys Compd 832:154837

    Article  CAS  Google Scholar 

  • Kaur R, Kaur A, Umar A et al (2019) Metal organic framework (MOF) porous octahedral nanocrystals of Cu-BTC: Synthesis, properties and enhanced adsorption properties. Mater Res Bull 109(1):124–133

    Article  CAS  Google Scholar 

  • Li W, Chen D, **a F et al (2015) Extremely high arsenic removal capacity for mesoporous aluminium magnesium oxide composites. Environmental Ence Nano 3(1):94–106

    Article  Google Scholar 

  • Li Y, Yuxia Xu, Yang W et al (2018) MOF-derived metal oxide composites for advanced electrochemical energy storage. Small 14(25):1704435

    Article  Google Scholar 

  • Li M, Liu H, Chen T et al (2020) Effificient U(VI) adsorption on iron/carbon composites derived from the coupling of cellulose with iron oxides: performance and mechanism. Sci Total Environ 703:135604

    Article  CAS  Google Scholar 

  • Lin M-C, Chang F-T, Uan J-Y et al (2013) Aqueous Li+/Al3+ alkaline solution for CO2 capture and the massive Li-Al-CO3 hydrotalcite precipitation during the interaction between CO2 gas and the Li+/Al3+ aqueous solution. J Mater Chem 46:14773–14782

    Article  Google Scholar 

  • Linghu W, Yang H, Sun Y et al (2017) One-pot synthesis of LDH/GO composites as highly effective adsorbents for decontamination of U(IV). ACS Sustain Chem Eng 5:5608–5616

    Article  CAS  Google Scholar 

  • Liu Yu, Hui Xu (2007) Equilibrium, thermodynamics and mechanisms of Ni2+ biosorption by aerobic granules. Biochem Eng J 35(2):174–182

    Article  CAS  Google Scholar 

  • Liu S, Luo M, Li J et al (2016) Adsorption equilibrium and kinetics of uranium onto porous azo-metal-organic frameworks. J Radioanal Nucl Chem 310:1–10

    Article  Google Scholar 

  • Liu N, Wang J, **xing W et al (2020a) Magnetic Fe3O4@MIL-53(Fe) nanocomposites derived from MIL-53(Fe) for the photocatalytic degradation of ibuprofen under visible light irradiation-Science Direct. Mater Res Bull 132:111000

    Article  CAS  Google Scholar 

  • Liu P, Qiang Yu, Xue Y et al (2020b) Adsorption performance of U(VI) by amidoxime-based activated carbon. J Radioanal Nucl Chem 324:813–822

    Article  CAS  Google Scholar 

  • Luo B-C, Yuan L-Y, Chai Z-F et al (2016) U(VI) capture from aqueous solution by highly porous and stable MOFs: UiO-66 and its amine derivative. J Radioanal Nucl Chem 307(1):269–276

    Article  CAS  Google Scholar 

  • Milmile SN, Pande JV, Karmakar S et al (2011) Equilibrium isotherm and kinetic modeling of the adsorption of nitrates by anion exchange Indion NSSR resin. Desalination 276(1–3):38–44

    Article  CAS  Google Scholar 

  • Molavi H, Eskandari A, Shojaei A et al (2018) Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66 (Zr). Microporous Mesoporous Mater 257:193–201

    Article  CAS  Google Scholar 

  • Oladoja NA, Chen S, Drewes JE et al (2015) Characterization of granular matrix supported nano magnesium oxide as an adsorbent for defluoridation of groundwater. Chem Eng J 281(3):632–643

    Article  CAS  Google Scholar 

  • Peng W, Huang G, Yang S et al (2019) Performance of biopolymer/graphene oxide gels for the effective adsorption of U(VI) from aqueous solution. J Radioanal Nucl Chem 322:861–868

    Article  CAS  Google Scholar 

  • Qiu L-G, Li Z-Q, Yun Wu et al (2008) Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of orgaoamines. Chem Commun 31:3642–3644

    Article  Google Scholar 

  • Rajaei A, Ghani K, Jafari M (2021) Modification of UiO-66 for removal of uranyl ion from aqueous solution by immobilization of tributyl phosphate. J Chem Sci 133(1):14

    Article  CAS  Google Scholar 

  • Riella HG, Durazzo M, Hirata M et al (1991) UO2-Gd2O3 solid solution formation from wet and dry processes. J Nucl Mater 178(2–3):204–211

    Article  CAS  Google Scholar 

  • Shahbazi A, Younesi H, Badiei A (2011) Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column. Chem Eng J 168(2):505–518

    Article  CAS  Google Scholar 

  • Shao D, Ren X, Wen J et al (2016) Immobilization of uranium by biomaterial stabilized FeS nanoparticles: effects of stabilizer and enrichment mechanism. J Hazard Mater 302:1–9

    Article  CAS  Google Scholar 

  • Song F, Zhang Z, Mai X et al (2021) Efficient removal of U(VI) from aqueous solutions via an activated 3D framework carbon. J Radioanal Nucl Chem 327(2):721–729

    Article  CAS  Google Scholar 

  • Syrbu N, Zalamai V, Culeac I et al (2019) Optical activity induced by rare-earth ions in As2S3 glasses and KCl crystals. Opt Laser Technol 114:216–223

    Article  CAS  Google Scholar 

  • Tamrakar RK, Bisen DP (2015) Thermoluminescence studies of ultraviolet and gamma irradiated erbium(III)-and ytterbium(III)-doped gadolinium oxide phosphors. Mater Sci Semicond Process 33:169–188

    Article  CAS  Google Scholar 

  • Tarighi S, Abbasi A, Geranmayeh S et al (2013) Synthesis of a new interpenetrated mixed ligand Ni(II) metal organic framework: structural, thermal and fluorescence studies and its thermal decomposition to NiO nanoparticles. J Inorg Organomet Polym Mater 23(4):808–815

    Article  CAS  Google Scholar 

  • Wang X, Le L, Alvarez PJJ et al (2015) Synthesis and characterization of green agents coated Pd/Fe bimetallic nanoparticles. J Taiwan Inst Chem Eng 50:297–305

    Article  CAS  Google Scholar 

  • Wang F, Li H, Liu Qi et al (2016a) A graphene oxide/amidoxime hydrogel for enhanced uranium capture. Sci Rep 6:19367

    Article  CAS  Google Scholar 

  • Wang X, Fan Q, Shujun Yu et al (2016b) High sorption of U(VI) on graphene oxides studied by batch experimental and theoretical calculations. Chem Eng J 287:448–455

    Article  CAS  Google Scholar 

  • Wang Y, Chen Y, Fang Yu et al (2017) The effect of magnesium oxide morphology on adsorption of U(VI) from aqueous solution. Chem Eng J 316:936–950

    Article  CAS  Google Scholar 

  • Wang Y, Chen Y, Liu C et al (2018) High-efficiency enrichment of uranium(VI) from aqueous solution by hydromagnesite and its calcination products. J Radioanal Nucl Chem 315:171–183

    Article  CAS  Google Scholar 

  • Wang D, Xu Y, **ao D et al (2019) Ultra-thin iron phosphate nanosheets for high efficient U(VI) adsorption. J Hazardous Mater 371:83–93

    Article  CAS  Google Scholar 

  • Wang J, Fang F, Zhou Y et al (2020a) Facile modification of graphene oxide and its application for the aqueous uranyl ion sequestration: Insights on the mechanism. Chemosphere 258:127152

    Article  CAS  Google Scholar 

  • Wang X, Guo H, Wang F et al (2020b) Halloysite nanotubes: an eco-friendly adsorbent for the adsorption of Th(IV)/U(VI) ions from aqueous solution. J Radioanal Nucl Chem 324:1151–1165

    Article  CAS  Google Scholar 

  • Wang Z, Liu Z, Ye T et al (2020c) Removal of uranyl ions from aqueous media by tannic acid-chitosan hydrothermal carbon: equilibria, kinetics and thermodynamics. J Radioanal Nucl Chem 326:1843–1852

    Article  CAS  Google Scholar 

  • **e X, Wang Y, **ong Z et al (2020) Highly efficient removal of uranium(VI) from aqueous solution using poly(cyclotriphosphazene-co-polyethyleneimine) microspheres. J Radioanal Nucl Chem 326(3):1867–1877

    Article  CAS  Google Scholar 

  • Xu C, Zhang W, Chen Y et al (2019) Synthesis of NH2-MIL-125/NH2 -MIL-125-P@TiO2 and Its Adsorption to Uranyl Ions. Chem Select. 43(04):12801–12806

    Google Scholar 

  • Yang H, Luo X, Ding H et al (2019) Adsorption of U(VI) by Elodea nuttallii: equilibrium, kinetic and mechanism analysis. J Radioanal Nucl Chem 319:227–235

    Article  CAS  Google Scholar 

  • Yao N, Fan Z, Meng R et al (2020) A cobalt hydroxide coated metal-organic framework for enhanced water oxidation electrocatalysis. Chem Eng J 408:127319

    Article  Google Scholar 

  • Zhang S, Ying Lu, Lin X et al (2014) Removal of fluoride from groundwater by adsorption onto La(III)-Al(III) loaded scoria adsorbent. Appl Surf Sci 303:1–5

    Article  CAS  Google Scholar 

  • Zhang B, Sun HY, Li J et al (2019) Fast and selective removal of aqueous uranium by a K+-activated robust zeolitic sulfde with wide pH resistance. Inorg Chem 58(17):11622–11629

    Article  CAS  Google Scholar 

  • Zhao C, Liu J, Deng Y et al (2019) Uranium(VI) adsorption from aqueous solutions by microorganism-graphene oxide composites via an immobilization approach. J Clean Product 236:117624

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to the National Natural Science Foundation for its support.

Funding

The work was supported by the National Natural Science Foundation of China (21667024).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the concept and design of the study. Lili Zhang was involved in preparation and completion of experiments, data analysis, manuscript preparation and writing; Yuantao Chen* contributed to methodological analysis; Meng Zhao was involved in experiment preparation; Wang Yinghui contributed to review of the original draft.

Corresponding author

Correspondence to Y T Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have consented to this content and have expressly consented to its publication.

Additional information

Editorial responsibility: Fatih ŞEN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Chen, Y., Zhao, M. et al. Efficient adsorption of uranyl ions from aqueous solution by Gd2O3 and Gd2O3–MgO composite materials. Int. J. Environ. Sci. Technol. 20, 815–830 (2023). https://doi.org/10.1007/s13762-022-04001-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-022-04001-5

Keywords

Navigation