Log in

Molecular characterization of Helianthus tuberosus L. treated with ethyl methanesulfonate based on inter-simple sequence repeat markers

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Mutation breeding is one of the most effective techniques in plant breeding. Mutagens are used to induce variation in plants. Ethyl methanesulfonate is considered the most effective mutagen among chemical mutagens. The doses and treatment durations of the used mutagens become important to create an effective mutation. Four different doses of ethyl methanesulfonate (0.0, 0.2, 0.4 and 0.6%) were used to treat the tuber eyes for two different time periods (3 and 6 h) in the present study. After treatment, molecular characterization was examined in plants developed from ethyl methanesulfonate-treated tuber eyes by inter-simple sequence repeat method in order to determine the genetic differences which ethyl methanesulfonate treatments led to create in plants. The research showed that there was a 7–48% similarity rate of the plants from the eyes treated with ethyl methanesulfonate. The genetic similarity rate was 7% between 0.4% dose of ethyl methanesulfonate for 3 h and its 0.2% dose for 6 h, but it was 82% for the control groups (untreated-ethyl methanesulfonate). The lowest similarity rate (10%) between control groups (untreated-ethyl methanesulfonate) and EMS treatments occurred at 0.4% dose of ethyl methanesulfonate for 3 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albani MC, Wilkinson MJ (1998) Inter simple sequence repeat polymerase chain reaction for the detection of somaclonal variation. Plant Breed 117:573–575

    Article  Google Scholar 

  • Altındal N (2014) Induction of variation using chemical mutagene (ethyl methanesulfonate) treatment and characterization by molecular markers in potato (Solanum tuberosum L.). Ph.D. thesis, Süleyman Demirel University, Graduate School of Natural and Applied Sciences, Field Crops Department, p 140

  • Altındal D, Altındal N (2018) Effect of ethyl methanesulphonate (EMS) applications on in vitro growth of sunflower (Helianthus annuus L. cv. Palancı-I) under salinity conditions. J Inst Sci Technol 8(4):351–359

    Article  Google Scholar 

  • Altındal D, Altındal N, Akgün İ (2017) Molecular characterization of triticale genotypes (X Triticosecale Wittmack) based on ISSR-PCR. J Tekirdag Agric Faculty 14(03):19–26

    Google Scholar 

  • Anonymous (2018) Helianthus tuberosus. http://antropocene.it/2018/11/27/helianthus-tuberosus. Accessed 05 May 2019

  • Antony R, Joseph J, Bastian D, Menon MV (2018) In vitro mutagenesis creates distinct morphological variants in cassava (Manihot esculenta Crantz.): a characterisation study. Electron J Plant Breed 9(2):433–449

    Article  Google Scholar 

  • Avery NC, Jain GS (1996) Influence of uranyl nitrate on seed germination and early seedling growth of Vigna radiata L. Wilczek. Binotes 15(2):79–83

    Google Scholar 

  • Badawi MA, Taha SS, Al-Hamada RI, Abdelaziz ME (2015) Effect of ethyl methanesulfonate (EMS) mutagen on genetic variability, growth characters and yield of potato. Middle East J Agric Res 4(4):1076–1087

    Google Scholar 

  • Baldini M, Danuso F, Rocca A, Bulfoni E, Monti A, Mastro GD (2011) Jerusalem artichoke (Helianthus tuberosus L.) productivity in different Italian growing areas: a modelling approach. Italian J Agron 6(e20):126–132

    Google Scholar 

  • Bidabadi SS, Meon S, Wahab Z, Subramaniam S, Mahmood M (2012) Induced mutations for enhancing variability of banana (Musa spp.) shoot tip cultures using ethyl methanesulphonate (EMS). Aust J Crop Sci 6(3):391–401

    CAS  Google Scholar 

  • Bock DG, Kane NC, Ebert DP, Rieseberg LH (2014) Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: neither from Jerusalem nor an artichoke. New Phytol 201:1021–1030

    Article  CAS  Google Scholar 

  • Çolak AM, Alan F (2017) Molecular characterization of different currant types. Int J Agric For Life Sci 1(1):21–26

    Google Scholar 

  • Cvejić S, Afza R, Jocić S, Prodanović S, Miklić V, Škorić D, Dragin S (2011) Radiosensitivity of sunflower inbred lines to mutagenesis. Helia 34(54):99–106

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Ehsanpour AA, Madani S, Hoseini M (2007) Detection of somaclonal variation in potato callus induced by UV-C radiation using RAPD-PCR. Gen Appl Plant Physiol 33:3–11

    CAS  Google Scholar 

  • Elias R, Till BJ, Mba C, Al-Safadi B (2009) Optimizing TILLING and Ecotilling techniques for potato (Solanum tuberosum L). BMC Res Notes 2:141

    Article  CAS  Google Scholar 

  • Gong S, Fu H, Wang J (2010) ISSR analysis of M1 generation of Gladiolus hybridus Hort. treated by EMS. J Northeast Agric Univ 17(2):22–26

    CAS  Google Scholar 

  • Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740

    CAS  Google Scholar 

  • Gunn RE, Shepard JF (1981) Regeneration of plants from mesophyll-derived protoplasts of British potato (Solanum tuberosum L.) cultivars. Plant Sci Lett 22:97–101

    Article  Google Scholar 

  • Ismail MA, Heakal MY, Fayed A (1977) Improvement of yield through induced mutagenesis in broad beans. Ind J Genet Plant Breed 36(3):347–350

    Google Scholar 

  • Jabeen N, Mirza B (2002) Ethyl methane sulphonate enhances genetic variability in Capsicum annuum. Asian J Plant Sci 1(4):425–428

    Article  Google Scholar 

  • Jain SS, Ahloowalia BS, Veilleux RE (1998) Somaclonal variation in crop improvement. In: Jain MS, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Acdemic Publishers, London, pp 203–217

    Chapter  Google Scholar 

  • Kavithamani D, Kalamani A, Vanniarajan C, Uma D (2010) Development of new vegetable soybean (Glycine max L. Merill) mutants with high protein and less fibre content. Electron J Plant Breed 1(4):1060–1065

    Google Scholar 

  • Khan S, Wani MR, Parveen K (2006) Sodium azide induced high yielding early mutant in lentil. Agric Sci Digest 26(1):65–66

    Google Scholar 

  • Khidr YA, Arafa MM, Eldemery SMM, Elsanhoty RM (2017) Molecular and morphological evaluation of potato genotypes cultivated in sandy soil. Egypt J Genet Cytol 46:1–17

    Google Scholar 

  • Kumar G, Kumar Rai P (2007) EMS induced karyomorphological variations in maize (Zea mays L.) inbreds. TUBİTAK Turk J Biol 31:187–195

    CAS  Google Scholar 

  • Kurobane TH, Yanaguchi HY, Sander C, Nilan RA (1979) The effects of gamma irradiation on the production and secretion of enzymes and enzymatic activities in barley. Environ Exp Bot 19:75–84

    Article  CAS  Google Scholar 

  • Lestari EG (2012) Combination of somaclonal variation and mutagenesis for crop improvement. J AgroBiogen 8(1):38–44

    Article  Google Scholar 

  • Luan Y-S, Zhang J, Gao X-R, An L-J (2007) Mutation induced by ethylmethanesulphonate (EMS), in vitro screening for salt tolerance and plant regeneration of sweet potato (Ipomoea batatas L.). Plant Cell Tissue Organ Cult 88:77–81

    Article  CAS  Google Scholar 

  • Mensah JK, Akomeah PA (1992) Mutagenic effects of hydroxylamine and streptomycin on the growth and seed yield of cowpea (Vigna unguiculata L. Walp). Legume Res 15(1):39–44

    Google Scholar 

  • Minocha JL, Arnason TJ (1962) Mutagenic effectiveness of ethyl methane sulphonate in barley. Nature 196:499

    Article  CAS  Google Scholar 

  • Mohamed MF, Abd El-Fattah BES, Nassef DMT, Aboul Nasr MH, Kandee NNM (2018) Phenotypic and molecular alterations of potato (Solanum tuberosum L.) cv. ‘Cara’ as affected by benzyl adenine and propagation cycle in vitro. Egypt J Hortic 45(2):205–228

    Google Scholar 

  • Moon K-B, Ahn D-J, Park J-S, Jung WY, Cho HS, Kim H-R, Jeon J-H, Park Y-i, Kim H-S (2018) Transcriptome profiling and characterization of drought-tolerant potato plant (Solanum tuberosum L.). Mol Cells 41(11):979–992

    CAS  Google Scholar 

  • Mornkham T, Wangsomnuk PP, Wangsomnuk P, Jogloy S, Pattanothai A, Fu YB (2012) Comparison of five DNA extraction methods for molecular analysis of Jerusalem artichoke (Helianthus tuberosus). Genet Mol Res 11(1):572–581

    Article  CAS  Google Scholar 

  • Onamu R, Legaria J, Rodríguez JL, Sahagùn J, Pèrez J (2016) Molecular characterization of potato (Solanum tuberosum L.) genotypes using random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) markers. Afr J Biotechnol 15(22):1015–1025

    Article  CAS  Google Scholar 

  • Parry MA, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassi A, Ouabbou H (2009) Mutation discovery for crop improvement. J Exp Bot 60:2817–2825

    Article  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2(3):225–238

    Article  CAS  Google Scholar 

  • Rohlf FJ (1991) NTSYS-pc, numerical taxonomy and multivariate analysis system. Exeter Software, Setauket

    Google Scholar 

  • Roychowdhury R, Datta S, Gupta P, Tah J (2012) Analysis of genetic parameters on mutant populations of mungbean (Vigna radiata L.) after ethyl methane sulphonate treatment. Not Sci Biol 4(1):137–143

    Article  CAS  Google Scholar 

  • Sabetta W, Alba V, Blanco A, Montemurro C (2011) sunTILL: a tilling resource for gene function analysis in sunflower. Plant Methods 7:20

    Article  CAS  Google Scholar 

  • Semagn K, Rnstad B, Ndjiondjop MN (2006) An overview of molecular marker methods for plants. Afr J Biotechnol 5:2540–2568

    CAS  Google Scholar 

  • Singh S, Richharia AK, Joshi AK (1998) An assessment of gamma ray induced mutations in rice (Oryza sativa L.). Ind J Genet Plant Breed 58(4):455–463

    Google Scholar 

  • Somalraju A, Ghose K, Main D, Bizimungu B, Fofana B (2019) Development of pre-breeding diploid potato germplasm displaying wide phenotypic variations as induced by ethyl methane sulfonate mutagenesis. Can J Plant Sci 99:138–151

    Article  CAS  Google Scholar 

  • Taheri S, Abdullah TL, Ahmad Z, Abdullah NAP (2014) Effect of acute gamma irradiation on Curcuma alismatifolia varieties and detection of DNA polymorphism through SSR marker. BioMed Res Int 2014:245–256

    Article  CAS  Google Scholar 

  • Ulukapi K, Nasircilar AG (2018) Induced mutation: creating genetic diversity in plants. Provisional chapter. IntechOpen, London, pp 1–15

    Google Scholar 

  • Van Harten AM (1998) Mutation breeding theory and practical applications. Cambridge University Press, Cambridge, pp 127–140

    Google Scholar 

  • Vogel EW, Natarajan AT (1995) DNA damage and repair in somatic and germ cells in vivo. Mutat Res 330:183–208

    Article  CAS  Google Scholar 

  • Wakui K, Hiroyoshi W, Takahashi Y, Takahashi Y, Fujigaki J (2009) Assessment of the congruity of genetic relationships and variation revealed by individual-and bulked-samples-based approaches using RAPD and ISSR markers in Japanese turnip (Brassica rapa ssp. rapa) cultivars. Breed Sci 59:447–452

    Article  CAS  Google Scholar 

  • Yang S, Sun X, Jiang X, Wang L, Tian J, Li L, Zhao M, Zhong Q (2019) Characterization of the Tibet plateau Jerusalem artichoke (Helianthus tuberosus L.) transcriptome by de novo assembly to discover genes associated with fructan synthesis and SSR analysis. Hereditas 156(9):1–13

    Google Scholar 

  • Zietkiewicz E, Rafalski JA, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am thankful to Dr. Demet ALTINDAL for his assistance in carrying out the experiments. The reviewers who critically checked my article and research deserve special thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Altindal.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altindal, N. Molecular characterization of Helianthus tuberosus L. treated with ethyl methanesulfonate based on inter-simple sequence repeat markers. Int. J. Environ. Sci. Technol. 16, 5311–5318 (2019). https://doi.org/10.1007/s13762-019-02486-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02486-1

Keywords

Navigation