Log in

Meta-analysis of the association of prosaposin polymorphisms rs4747203 and rs885828 with risk of Parkinson’s disease

  • Original article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Background

Previous research has established a connection between polymorphisms rs4747203 and rs885828 in the prosaposin (PSAP) gene and an increased risk of Parkinson’s disease (PD). However, other studies have found no significant difference in risk compared to the general population.

Methods

To evaluate the current evidence linking rs4747203 and rs885828 to PD risk, we conducted a comprehensive search of PubMed, the Web of Science, Embase, and the Cochrane Library for relevant studies up until May 2023. In addition, we analyzed data from the publicly available “PD Variant Browser”. We performed a meta-analysis using Stata 17.0 to synthesize the findings from the selected studies.

Results

Our meta-analysis, which included data from six published studies and the public database, revealed no significant association between PD risk and either rs4747203 [OR (95% CI) = 0.99 (0.93–1.05), I2 = 90.3%, P = 0.635] or rs885828 [OR (95% CI) = 1.01 (0.95–1.07), I2 = 90.7%, P = 0.773]. These results remained consistent when examining subgroups of individuals within or outside of Asia.

Conclusion

The available evidence does not support an association between the genotype at rs4747203 or rs885828 and the risk of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data used in this article are included in the paper and available upon request with no restriction.

References

  1. Hernandez DG, Reed X, Singleton AB (2016) Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance. J Neurochem 139(Suppl 1):59–74. https://doi.org/10.1111/jnc.13593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang Y, Gao L, Chen J et al (2021) Pharmacological modulation of Nrf2/HO-1 signaling pathway as a therapeutic target of Parkinson’s disease. Front Pharmacol 12:757161. https://doi.org/10.3389/fphar.2021.757161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bloem BR, Okun MS, Klein C (2021) Parkinson’s disease. The Lancet 397:2284–2303. https://doi.org/10.1016/S0140-6736(21)00218-X

    Article  CAS  Google Scholar 

  4. Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047. https://doi.org/10.1126/science.276.5321.2045

    Article  CAS  PubMed  Google Scholar 

  5. Diaz-Font A, Cormand B, Santamaria R et al (2005) A mutation within the saposin D domain in a Gaucher disease patient with normal glucocerebrosidase activity. Hum Genet 117:275–277. https://doi.org/10.1007/s00439-005-1288-x

    Article  PubMed  Google Scholar 

  6. Vekrellis K, **louri M, Emmanouilidou E et al (2011) Pathological roles of α-synuclein in neurological disorders. Lancet Neurol 10:1015–1025. https://doi.org/10.1016/S1474-4422(11)70213-7

    Article  CAS  PubMed  Google Scholar 

  7. Moors T, Paciotti S, Chiasserini D et al (2016) Lysosomal dysfunction and α-synuclein aggregation in Parkinson’s disease: diagnostic links. Mov Disord 31:791–801. https://doi.org/10.1002/mds.26562

    Article  CAS  PubMed  Google Scholar 

  8. Wong YC, Krainc D (2016) Lysosomal trafficking defects link Parkinson’s disease with Gaucher’s disease. Mov Disord 31:1610–1618. https://doi.org/10.1002/mds.26802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robak LA, Jansen IE, van Rooij J et al (2017) Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease. Brain 140:3191–3203. https://doi.org/10.1093/brain/awx285

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chang D, Nalls MA, Hallgrímsdóttir IB et al (2017) A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat Genet 49:1511–1516. https://doi.org/10.1038/ng.3955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tylki-Szymańska A, Czartoryska B, Vanier M-T et al (2007) Non-neuronopathic Gaucher disease due to saposin C deficiency. Clin Genet 72:538–542. https://doi.org/10.1111/j.1399-0004.2007.00899.x

    Article  PubMed  Google Scholar 

  12. Yap TL, Gruschus JM, Velayati A et al (2013) Saposin C protects glucocerebrosidase against α-synuclein inhibition. Biochemistry 52:7161–7163. https://doi.org/10.1021/bi401191v

    Article  CAS  PubMed  Google Scholar 

  13. Lin Z, Zhang B (2021) Striking while the iron is hot: the role of Prosaposin (PSAP) in Parkinson’s disease. Mov Disord 36:2224–2224. https://doi.org/10.1002/mds.28781

    Article  CAS  PubMed  Google Scholar 

  14. Oji Y, Hatano T, Ueno S-I et al (2020) Variants in saposin D domain of prosaposin gene linked to Parkinson’s disease. Brain 143:1190–1205. https://doi.org/10.1093/brain/awaa064

    Article  PubMed  Google Scholar 

  15. Sosero YL, Bandres-Ciga S, Hassin-Baer S et al (2020) Lack of evidence for genetic association of saposins A, B, C and D with Parkinson’s disease. Brain 143:e72. https://doi.org/10.1093/brain/awaa214

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lin Z-H, Ruan Y, Xue N-J et al (2021) PSAP intronic variants around saposin D domain and Parkinson’s disease. Brain 144:e3–e3. https://doi.org/10.1093/brain/awaa354

    Article  PubMed  Google Scholar 

  17. Chen Y-P, Gu X-J, Ou R-W et al (2021) Genetic analysis of prosaposin, the lysosomal storage disorder gene in Parkinson’s disease. Mol Neurobiol 58:1583–1592. https://doi.org/10.1007/s12035-020-02218-4

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Y, Pan H, Zeng Q et al (2021) PSAP variants in Parkinson’s disease: a large cohort study in Chinese mainland population. Brain 144:e25–e25. https://doi.org/10.1093/brain/awaa391

    Article  PubMed  Google Scholar 

  19. Facchi D, Rimoldi V, Straniero L et al (2020) Saposin D variants are not a common cause of familial Parkinson’s disease among Italians. Brain 143:e71. https://doi.org/10.1093/brain/awaa213

    Article  PubMed  Google Scholar 

  20. Chao YX, Lee B, Ng EY et al (2021) Association analysis of PSAP variants in Parkinson’s disease patients. Brain 144:e9–e9. https://doi.org/10.1093/brain/awaa358

    Article  PubMed  Google Scholar 

  21. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25:603–605. https://doi.org/10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  22. Han B, Eskin E (2011) Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am J Hum Genet 88:586–598. https://doi.org/10.1016/j.ajhg.2011.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088. https://doi.org/10.2307/2533446

    Article  CAS  PubMed  Google Scholar 

  24. Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634. https://doi.org/10.1136/bmj.315.7109.629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou Z, Chen Q, Liu Q et al (2022) Cortical synaptic mechanism for chronic pain and anxiety in Parkinson’s disease. J Transl Int Med 10:300–303. https://doi.org/10.2478/jtim-2022-0046

    Article  PubMed  Google Scholar 

  26. Yu L, ** J, Xu Y, Zhu X (2022) Aberrant energy metabolism in Alzheimer’s disease. J Transl Int Med 10:197–206. https://doi.org/10.2478/jtim-2022-0024

    Article  PubMed  PubMed Central  Google Scholar 

  27. Klein AD, Mazzulli JR (2018) Is Parkinson’s disease a lysosomal disorder? Brain 141:2255–2262. https://doi.org/10.1093/brain/awy147

    Article  PubMed  PubMed Central  Google Scholar 

  28. Halperin A, Elstein D, Zimran A (2006) Increased incidence of Parkinson disease among relatives of patients with Gaucher disease. Blood Cells Mol Dis 36:426–428. https://doi.org/10.1016/j.bcmd.2006.02.004

    Article  PubMed  Google Scholar 

  29. Gegg ME, Schapira AHV (2016) Mitochondrial dysfunction associated with glucocerebrosidase deficiency. Neurobiol Dis 90:43–50. https://doi.org/10.1016/j.nbd.2015.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pickrell AM, Youle RJ (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85:257–273. https://doi.org/10.1016/j.neuron.2014.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burbulla LF, Song P, Mazzulli JR et al (2017) Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 357:1255–1261. https://doi.org/10.1126/science.aam9080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O’Brien JS, Kishimoto Y (1991) Saposin proteins: structure, function, and role in human lysosomal storage disorders. FASEB J 5:301–308. https://doi.org/10.1096/fasebj.5.3.2001789

    Article  PubMed  Google Scholar 

  33. Tian R, Abarientos A, Hong J et al (2021) Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat Neurosci 24:1020–1034. https://doi.org/10.1038/s41593-021-00862-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Freeman D, Cedillos R, Choyke S et al (2013) Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis. PLoS ONE 8:e62143. https://doi.org/10.1371/journal.pone.0062143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bellomo G, Paciotti S, Gatticchi L, Parnetti L (2020) The vicious cycle between α -synuclein aggregation and autophagic-lysosomal dysfunction. Mov Disord 35:34–44. https://doi.org/10.1002/mds.27895

    Article  CAS  PubMed  Google Scholar 

  36. Mazzulli JR, Xu Y-H, Sun Y et al (2011) Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146:37–52. https://doi.org/10.1016/j.cell.2011.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mazzulli JR, Zunke F, Isacson O et al (2016) α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proc Natl Acad Sci U S A 113:1931–1936. https://doi.org/10.1073/pnas.1520335113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Applied Basic Research Foundation of Yunnan Province [grant numbers:202201AS070164, **nglong Yang:202101AY070001-115], Yunnan Province Clinical Research Center for Geriatric Disease [grant number: 202102AA310069] and the **nglong Yang Joint Institute of Smoking and Health (No. 2021539200340039).

Author information

Authors and Affiliations

Authors

Contributions

XY, HR and BL contributed to the design. LZ and XZ participated in data collection and analysis. LZ, YZ and QZ written the manuscript. YG revised and improved the full text. All authors commented on previous versions of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to **nglong Yang.

Ethics declarations

Conflict of interest

Authors have no conflicts of interest to declare.

Ethical approval

Not required, as this is a review of existing literature.

Informed Consent

This manuscript has been approved for publication by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Zhang, X., Guan, Y. et al. Meta-analysis of the association of prosaposin polymorphisms rs4747203 and rs885828 with risk of Parkinson’s disease. Acta Neurol Belg 124, 573–580 (2024). https://doi.org/10.1007/s13760-023-02446-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-023-02446-0

Keywords

Navigation