Log in

Scaling in the Evolution of Biodiversity

  • CRITICAL CONCEPTS IN BIOLOGICAL THEORY
  • Published:
Biological Theory Aims and scope Submit manuscript

Abstract

Biodiversity is a fundamental concept in biology. By biodiversity scientists usually mean taxic richness, i.e., the number of species, genera, or other higher taxonomic categories. Diversity sometimes is equated to the complexity of biological systems, but at the higher hierarchical level of observation (in: McShea DW, Brandon RN (2010) Biology's first law: the tendency for diversity and complexity to increase in evolutionary systems, University of Chicago Press, Chicago). Therefore, diversity is a deeply hierarchical concept that can be applied to multiple levels of observation in biology. Here we will concentrate on the problems of the dynamics of taxonomic diversity—the transitive currency of evolutionary, ecological, and developmental biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adler PB, Lauenroth WK (2003) The power of time: spatiotemporal scaling of species diversity. Ecol Lett 6:749–756

    Article  Google Scholar 

  • Barnosky AD (2001) Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. J Vertebr Paleontol 21:172–185

    Article  Google Scholar 

  • Benton MJ (1997) Models for the diversification of life. Trends Ecol Evol 12:490–495

    Article  CAS  PubMed  Google Scholar 

  • Brandon RN, McShea DW (2020) The missing two-thirds of evolutionary theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cornette JL, Lieberman BS (2004) Random walks in the history of life. Proc Natl Acad Sci USA 101:187–191

    Article  ADS  CAS  PubMed  Google Scholar 

  • Eldredge N, Thompson JN, Brakefield PM, Gavrilets S, Jablonski D, Jackson JBC et al (2005) The dynamics of evolutionary stasis. Paleobiology 31:133–145

    Article  Google Scholar 

  • Erwin DH (2012) Novelties that change carrying capacity. J Exp Zool B Mol Dev Evol 318:460–465

    Article  PubMed  Google Scholar 

  • Godfrey-Smith P (2009) Darwinian populations and natural selection. Oxford University Press, Oxford

    Book  Google Scholar 

  • Gould SJ (1980) The promise of paleobiology as a nomothetic, evolutionary discipline. Paleobiology 6:96–118

    Article  Google Scholar 

  • Gould SJ (1989) Wonderful life: the Burgess Shale and the nature of history. WW Norton, New York

    Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Haar A (1910) Zur theorie der orthogonalen funktionensysteme. Math Ann 69:331–371

    Article  MathSciNet  Google Scholar 

  • Hoffman A (1987) Neutral model of taxonomic diversification in the Phanerozoic: a methodological discussion. In: Nitecki MH, Hoffman A (eds) Neutral models in biology. Oxford University Press, New York, pp 133–146

    Google Scholar 

  • Jablonski D (1987) Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238:360–363

    Article  ADS  CAS  PubMed  Google Scholar 

  • Jablonski D (2008) Species selection: theory and data. Annu Rev Ecol Evol Syst 39:501–524

    Article  Google Scholar 

  • Lieberman BS (2016) Pattern versus processes and hierarchies: revisiting eternal metaphors in macroevolutionary theory. In: Eldredge N, Pievani T, Serrelli E, Temkin I (eds) Evolutionary theory: a hierarchical perspective. University of Chicago Press, Chicago, pp 29–46

    Google Scholar 

  • Lieberman BS, Melott AL (2007) Considering the case for biodiversity cycles: re-examining the evidence for periodicity in the fossil record. PLoS ONE 2:e759

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Lieberman BS, Melott AL (2012) Whilst this planet has gone cycling on: what role for periodic astronomical phenomena in large-scale patterns in the history of life? In: Talent JA (ed) Earth and life. International year of planet earth. Springer, Dordrecht, pp 37–50

    Google Scholar 

  • Lieberman BS, Melott AL (2013) Declining volatility, a general property of disparate systems: from fossils, to stocks, to the stars. Palaeontology 56:1297–1304

    Article  Google Scholar 

  • Longo G, Montévil M, Kauffman S (2012) No entailing laws, but enablement in the evolution of the biosphere. In: Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference companion. ACM, pp 1379–1392

  • Lovejoy S (2015) A voyage through scales, a missing quadrillion and why the climate is not what you expect. Clim Dyn 44:3187–3210

    Article  Google Scholar 

  • Lovejoy S (2019) Weather, macroweather, and the climate: our random yet predictable atmosphere. Oxford University Press, New York

    Book  Google Scholar 

  • Lovejoy S (2022) Scaling and scale invariance. In: Daya SB, Cheng Q, McKinley J, Agterberg F (eds) Encyclopedia of mathematical geosciences. Encyclopedia of earth sciences series. Springer, Cham, pp 1–13

    Google Scholar 

  • Lovejoy S, Schertzer D (2012) Haar wavelets, fluctuations and structure functions: convenient choices for geophysics. Nonlinear Process Geophys 19:513–527

    Article  ADS  Google Scholar 

  • Lovejoy S, Schertzer D (2013) The weather and climate: emergent laws and multifractal cascades. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Maynard Smith J, Szathmáry E (1998) The major transitions in evolution. Oxford University Press, Oxford

    Google Scholar 

  • McShea DW, Brandon RN (2010) Biology’s first law: the tendency for diversity and complexity to increase in evolutionary systems. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Newell ND (1963) Crises in the history of life. Sci Am 208(2):76–95

    Article  Google Scholar 

  • Newman M, Palmer R (2003) Modeling extinction. Oxford University Press, Oxford

    Book  Google Scholar 

  • Plotnick RE, Sepkoski JJJ (2001) A multiplicative multifractal model of originations and extinctions. Paleobiology 27:126–139

    Article  Google Scholar 

  • Raup D, Gould SJ (1974) Stochastic simulation and evolution of morphology-towards a nomothetic paleontology. Syst Biol 23:305–322

    Article  Google Scholar 

  • Raup D, Sepkoski J (1984) Periodicity of extinctions in the geologic past. Proc Natl Acad Sci USA 81:801–805

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts GG, Mannion PD (2019) Timing and periodicity of Phanerozoic marine biodiversity and environmental change. Sci Rep 9:1–11

    Article  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sepkoski JJ (1981) A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7(1):36–53

    Article  Google Scholar 

  • Sepkoski D (2012) Rereading the fossil record: the growth of paleobiology as an evolutionary discipline. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Sepkoski JJ, Bambach RK, Raup DM, Valentine JW (1981) Phanerozoic marine diversity and the fossil record. Nature 293:435–437

    Article  ADS  Google Scholar 

  • Solé RV, Manrubia SC, Benton M, Kauffman S, Bak P (1999) Criticality and scaling in evolutionary ecology. Trends Ecol Evol 14:156–160

    Article  PubMed  Google Scholar 

  • Spiridonov A, Lovejoy S (2022) Life rather than climate influences diversity at scales greater than 40 million years. Nature 607:307–312

    Article  ADS  CAS  PubMed  Google Scholar 

  • Spiridonov A, Balakauskas L, Lovejoy S (2022) Longitudinal expansion fitness of brachiopod genera controlled by the Wilson cycle. Glob Planet Change 216:103926

    Article  Google Scholar 

  • Strotz LC, Simões M, Girard M, Breitkreuz L, Kimmig J, Lieberman BS (2018) Getting somewhere with the Red Queen: chasing a biologically relevant definition. Biol Lett 14(20170734):1–7. https://doi.org/10.1098/rsbl.2017.0734

    Article  Google Scholar 

  • Van Valen L (1973) A new evolutionary law. Evol Theory 1:1–30

    Google Scholar 

Download references

Acknowledgments

We would like to thank Kenneth McKenna and Stuart Newman for the opportunity to contribute this essay. We also thank Bruce Lieberman for many suggestions which significantly improved and clarified the essay.

Funding

The research of A. Spiridonov was supported by the Research Council of Lithuania project S-MIP-21-9 “The role of spatial structuring in major transitions in macroevolution.” S. Lovejoy acknowledges the National Science and Engineering Council of Canada for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Spiridonov.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests that hinder the publication or review of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiridonov, A., Lovejoy, S. Scaling in the Evolution of Biodiversity. Biol Theory 18, 1–6 (2023). https://doi.org/10.1007/s13752-022-00427-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13752-022-00427-9

Keywords

Navigation