Log in

Assessment of the cytotoxicity of silver-graphene oxide nanocomposites on Escherichia coli and glioblastoma cancer cells

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this research, we examined the toxicity of Ag-graphene oxide (GO) nanocomposites against both the Gram-negative bacterium Escherichia coli and Glioblastoma cancer cells (U87MG). Our findings reveal that Ag-GO possesses bactericidal properties, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 160 µg/mL. The antibacterial efficacy of Ag-GO is contingent on contact time and concentration, making it a potential candidate for integration into materials designed to combat microbial infections. The bactericidal effect of Ag-GO can be attributed to the release of silver ions and the physical damage inflicted by the sharp edges of GO sheets. Furthermore, our study demonstrates that Ag-GO exhibits anticancer activity against U87MG cells, with an IC50 value of 270 µg/mL. The mechanism underlying the anticancer activity of Ag-GO likely involves cell membrane disruption and apoptosis induction. These findings signify the promising medical and biological applications of Ag-graphene oxide nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. M. Rendošová, Z. Vargová, J. Kuchár, D. Sabolová, Š Levoča, J. Kudláčová, H. Paulíková, D. Hudecová, V. Helebrandtová, M. Almáši, M. Vilková, M. Dušek, D. Bobáľová, New silver complexes with bioactive glycine and nicotinamide molecules—characterization, DNA binding, antimicrobial and anticancer evaluation. J. Inorg. Biochem. 168, 1–12 (2017). https://doi.org/10.1016/j.**orgbio.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  2. E.K. Goharshadi, K. Goharshadi, M. Moghayedi, The use of nanotechnology in the fight against viruses: a critical review. Coord. Chem. Rev. 464, 214559 (2022). https://doi.org/10.1016/j.ccr.2022.214559

    Article  CAS  Google Scholar 

  3. W. Shao, X. Liu, H. Min, G. Dong, Q. Feng, S. Zuo, Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl. Mater. Interfaces 7, 6966–6973 (2015). https://doi.org/10.1021/acsami.5b00937

    Article  CAS  PubMed  Google Scholar 

  4. U. Theuretzbacher, K. Bush, S. Harbarth, M. Paul, J.H. Rex, E. Tacconelli, G.E. Thwaites, Critical analysis of antibacterial agents in clinical development., Nat. Rev. Microbiol. (2020). https://doi.org/10.1038/s41579-020-0340-0

  5. A. Khan, F. Ameen, F. Khan, A. Al-Arfaj, B. Ahmed, Fabrication and antibacterial activity of nanoenhanced conjugate of silver (I) oxide with graphene oxide. Mater. Today Commun. 25, 101667 (2020). https://doi.org/10.1016/j.mtcomm.2020.101667

    Article  CAS  Google Scholar 

  6. A. Pugazhendhi, R. Prabhu, K. Muruganantham, R. Shanmuganathan, S. Natarajan, Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J. Photochem. Photobiol. B Biol. 190, 86–97 (2019). https://doi.org/10.1016/j.jphotobiol.2018.11.014

    Article  CAS  Google Scholar 

  7. N. Hashim, M. Paramasivam, J.S. Tan, D. Kernain, M.H. Hussin, N. Brosse, F. Gambier, P.B. Raja, Green mode synthesis of silver nanoparticles using Vitis vinifera’s tannin and screening its antimicrobial activity/apoptotic potential versus cancer cells. Mater. Today Commun. 25, 101511 (2020). https://doi.org/10.1016/j.mtcomm.2020.101511

    Article  CAS  Google Scholar 

  8. W.P. Xu, L.C. Zhang, J.P. Li, Y. Lu, H.H. Li, Y.N. Ma, W. Di Wang, S.H. Yu, Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. J. Mater. Chem. 21, 4593–4597 (2011). https://doi.org/10.1039/c0jm03376f

    Article  CAS  Google Scholar 

  9. D. Qin, G. Yang, Y. Wang, Y. Zhou, L. Zhang, Green synthesis of biocompatible trypsin-conjugated Ag nanocomposite with antibacterial activity. Appl. Surf. Sci. 469, 528–536 (2019). https://doi.org/10.1016/j.apsusc.2018.11.057

    Article  CAS  Google Scholar 

  10. G. Das, J.K. Patra, H.S. Shin, Biosynthesis, and potential effect of fern mediated biocompatible silver nanoparticles by cytotoxicity, antidiabetic, antioxidant and antibacterial, studies. Mater. Sci. Eng. C 114, 111011 (2020). https://doi.org/10.1016/j.msec.2020.111011

    Article  CAS  Google Scholar 

  11. D. Muchintala, V. Suresh, D. Raju, R.B. Sashidhar, Synthesis and characterization of cecropin peptide-based silver nanocomposites: Its antibacterial activity and mode of action. Mater. Sci. Eng. C 110, 110712 (2020). https://doi.org/10.1016/j.msec.2020.110712

    Article  CAS  Google Scholar 

  12. M. Kawish, F. Ullah, H.S. Ali, S. Saifullah, I. Ali, J. ur Rehman, M. Imran, Bactericidal potentials of silver nanoparticles: novel aspects against multidrug resistance bacteria (Elsevier, New York, 2020). https://doi.org/10.1016/b978-0-12-816960-5.00010-0

    Book  Google Scholar 

  13. C. Das, S.S. Paul, A. Saha, T. Singh, A. Saha, J. Im, G. Biswas, Silver-based nanomaterials as therapeutic agents against coronaviruses: a review. Int. J. Nanomed. 15, 9301–9315 (2020). https://doi.org/10.2147/IJN.S280976

    Article  Google Scholar 

  14. A. Ebrahimi, E.K. Goharshadi, M. Mohammadi, Reduced graphene oxide/silver/wood as a salt-resistant photoabsorber in solar steam generation and a strong antibacterial agent. Mater. Chem. Phys. 275, 125258 (2022). https://doi.org/10.1016/j.matchemphys.2021.125258

    Article  CAS  Google Scholar 

  15. S. Tan, X. Wu, Y. **ng, S. Lilak, M. Wu, J.X. Zhao, Enhanced synergetic antibacterial activity by a reduce graphene oxide/Ag nanocomposite through the photothermal effect. Colloids Surfaces B Biointerfaces. 185, 1–9 (2020). https://doi.org/10.1016/j.colsurfb.2019.110616

    Article  CAS  Google Scholar 

  16. Y. Lyu, M. Yu, Q. Liu, Q. Zhang, Z. Liu, Y. Tian, D. Li, M. Changdao, Synthesis of silver nanoparticles using oxidized amylose and combination with curcumin for enhanced antibacterial activity. Carbohydr. Polym. 230, 115573 (2020). https://doi.org/10.1016/j.carbpol.2019.115573

    Article  CAS  PubMed  Google Scholar 

  17. M.F.H. Abd El-Kader, M.T. Elabbasy, M.K. Ahmed, A.A. Menazea, Structural, morphological features, and antibacterial behavior of PVA/PVP polymeric blends doped with silver nanoparticles via pulsed laser ablation. J. Mater. Res. Technol. 13, 291–300 (2021). https://doi.org/10.1016/j.jmrt.2021.04.055

    Article  CAS  Google Scholar 

  18. N. Korkmaz, Y. Ceylan, A. Hamid, A. Karadağ, A.S. Bülbül, M.N. Aftab, Ö. Çevik, F. Şen, Biogenic silver nanoparticles synthesized via Mimusops elengi fruit extract, a study on antibiofilm, antibacterial, and anticancer activities. J. Drug Deliv. Sci. Technol. 59, 101864 (2020). https://doi.org/10.1016/j.jddst.2020.101864

    Article  CAS  Google Scholar 

  19. T. Bruna, F. Maldonado-Bravo, P. Jara, N. Caro, Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci. (2021). https://doi.org/10.3390/ijms22137202

    Article  PubMed  PubMed Central  Google Scholar 

  20. J.H. Park, S. Gurunathan, Y.J. Choi, J.W. Han, H. Song, J.H. Kim, Silver nanoparticles suppresses brain-derived neurotrophic factor-induced cell survival in the human neuroblastoma cell line SH-SY5Y. J. Ind. Eng. Chem. 47, 62–73 (2017). https://doi.org/10.1016/j.jiec.2016.11.015

    Article  CAS  Google Scholar 

  21. S. Gurunathan, M. Jeyaraj, M.H. Kang, J.H. Kim, Graphene oxide-platinum nanoparticle nanocomposites: a suitable biocompatible therapeutic agent for prostate cancer. Polymers (Basel). (2019). https://doi.org/10.3390/polym11040733

    Article  PubMed  PubMed Central  Google Scholar 

  22. M. Pavithra, M.B.J. Raj, Synthesis of ultrasonic assisted co-precipitated Ag/ZnO nanorods and their profound anti-liver cancer and antibacterial properties. Mater. Sci. Eng. B 278, 115653 (2022)

    Article  CAS  Google Scholar 

  23. M. Moghayedi, E.K. Goharshadi, K. Ghazvini, H. Ahmadzadeh, M.N. Jorabchi, Antibacterial activity of Ag nanoparticles/phosphomolybdate/reduced graphene oxide nanocomposite: kinetics and mechanism insights. Mater. Sci. Eng. B 262, 114709 (2020). https://doi.org/10.1016/j.mseb.2020.114709

    Article  CAS  Google Scholar 

  24. H. Noreen, J. Iqbal, W. Hassan, G. Rahman, M. Yaseen, A.U. Rahman, Synthesis of graphene nanoplatelets/polythiophene nanocomposites with enhanced photocatalytic degradation of bromophenol blue and antibacterial properties. Mater. Res. Bull. 142, 111435 (2021). https://doi.org/10.1016/j.materresbull.2021.111435

    Article  CAS  Google Scholar 

  25. M. Hadadian, E.K. Goharshadi, A. Youssefi, Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids. J. Nanoparticle Res. (2014). https://doi.org/10.1007/s11051-014-2788-1

    Article  Google Scholar 

  26. E.K. Goharshadi, G. Akhlamadi, S.J. Mahdizadeh, Investigation of graphene oxide nanosheets dispersion in water based on solubility parameters: a molecular dynamics simulation study. RSC Adv. 5, 106421–106430 (2015). https://doi.org/10.1039/c5ra19932h

    Article  CAS  Google Scholar 

  27. Y. Gerasymchuk, A. Lukowiak, A. Wedzynska, A. Kedziora, G. Bugla-Ploskonska, D. Piatek, T. Bachanek, V. Chernii, L. Tomachynski, W. Strek, New photosensitive nanometric graphite oxide composites as antimicrobial material with prolonged action. J. Inorg. Biochem. 159, 142–148 (2016). https://doi.org/10.1016/j.**orgbio.2016.02.019

    Article  CAS  PubMed  Google Scholar 

  28. S. Jaworski, M. Wierzbicki, E. Sawosz, A. Jung, G. Gielerak, J. Biernat, H. Jaremek, W. Łojkowski, B. Woźniak, J. Wojnarowicz, L. Stobiński, A. Małolepszy, M. Mazurkiewicz-Pawlicka, M. Łojkowski, N. Kurantowicz, A. Chwalibog, Graphene oxide-based nanocomposites decorated with silver nanoparticles as an antibacterial agent. Nanoscale Res. Lett. (2018). https://doi.org/10.1186/s11671-018-2533-2

    Article  PubMed  PubMed Central  Google Scholar 

  29. H. Naeem, M. Ajmal, R.B. Qureshi, S.T. Muntha, M. Farooq, M. Siddiq, Facile synthesis of graphene oxide–silver nanocomposite for decontamination of water from multiple pollutants by adsorption, catalysis and antibacterial activity. J. Environ. Manage. 230, 199–211 (2019). https://doi.org/10.1016/j.jenvman.2018.09.061

    Article  CAS  PubMed  Google Scholar 

  30. K. Ko, M.J. Kim, J.Y. Lee, W. Kim, H. Chung, Effects of graphene oxides and silver-graphene oxides on aquatic microbial activity. Sci. Total. Environ. 651, 1087–1095 (2019). https://doi.org/10.1016/j.scitotenv.2018.09.124

    Article  CAS  PubMed  Google Scholar 

  31. M. Godoy-Gallardo, U. Eckhard, L.M. Delgado, Y.J.D. de Roo Puente, M. Hoyos-Nogués, F.J. Gil, R.A. Perez, Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications. Bioact. Mater. 6, 4470–4490 (2021). https://doi.org/10.1016/j.bioactmat.2021.04.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. T. Kavinkumar, K. Varunkumar, V. Ravikumar, S. Manivannan, Anticancer activity of graphene oxide-reduced graphene oxide-silver nanoparticle composites. J. Colloid Interface Sci. 505, 1125–1133 (2017). https://doi.org/10.1016/j.jcis.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  33. D. Ali, S. Alarifi, S. Alkahtani, R.S. Almeer, Silver-doped graphene oxide nanocomposite triggers cytotoxicity and apoptosis in human hepatic normal and carcinoma cells. Int. J. Nanomed. 13, 5685–5699 (2018). https://doi.org/10.2147/IJN.S165448

    Article  CAS  Google Scholar 

  34. A.V.A. Mariadoss, K. Saravanakumar, A. Sathiyaseelan, M.H. Wang, Preparation, characterization and anti-cancer activity of graphene oxide–silver nanocomposite. J. Photochem. Photobiol. B Biol. 210, 111984 (2020). https://doi.org/10.1016/j.jphotobiol.2020.111984

    Article  CAS  Google Scholar 

  35. S. Das, S. Bose, G.K. Nayak, S.C. Satapathy, S. Saxena, Brain tumor segmentation and overall survival period prediction in glioblastoma multiforme using radiomic features. Concurr. Comput. Pract. Exp. 34(20), e6501 (2021)

    Article  Google Scholar 

  36. R. Jayarama-Naidu, E. Gallus, Abnormal Schwannoma-like Growth of multiple, multifocal BRAF V600E-positive Glioblastoma in the Interior Acoustic Canal with Leptomeningeal Infiltration: a case report. J. Med. Case Rep. 16, 1–7 (2022)

    Article  Google Scholar 

  37. A.K. Joe, H. Liu, M. Suzui, M.E. Vural, D. **ao, I.B. Weinstein, A.K. Joe, I.B. Weinstein, Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clin. Cancer Res. 8, 893–903 (2002)

    CAS  PubMed  Google Scholar 

  38. A. Farzaneh, N. Saghatoleslami, E.K. Goharshadi, H. Gharibi, H. Ahmadzadeh, 3-D mesoporous nitrogen-doped reduced graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline fuel cells: role of π and lone pair electrons. Electrochim. Acta 222, 608–618 (2016). https://doi.org/10.1016/j.electacta.2016.11.015

    Article  CAS  Google Scholar 

  39. H. Azizi-Toupkanloo, E.K. Goharshadi, P. Nancarrow, Structural, electrical, and rheological properties of palladium/silver bimetallic nanoparticles prepared by conventional and ultrasonic-assisted reduction methods. Adv. Powder Technol. 25, 801–810 (2014). https://doi.org/10.1016/j.apt.2013.11.015

    Article  CAS  Google Scholar 

  40. M. Moghayedi, E.K. Goharshadi, K. Ghazvini, H. Ahmadzadeh, L. Ranjbaran, R. Masoudi, R. Ludwig, Kinetics and mechanism of antibacterial activity and cytotoxicity of Ag-RGO nanocomposite. Colloids Surfaces B Biointerfaces. 159, 366–374 (2017). https://doi.org/10.1016/j.colsurfb.2017.08.001

    Article  CAS  PubMed  Google Scholar 

  41. S. Samiee, E.K. Goharshadi, Graphene nanosheets as efficient adsorbent for an azo dye removal: Kinetic and thermodynamic studies. J. Nanoparticle Res. 16, 2542 (2014). https://doi.org/10.1007/s11051-014-2542-8

    Article  CAS  Google Scholar 

  42. B. Song, C. Zhang, G. Zeng, J. Gong, Y. Chang, Y. Jiang, Antibacterial properties and mechanism of graphene oxide-silver nanocomposites as bactericidal agents for water disinfection. Arch. Biochem. Biophys. 604, 167–176 (2016). https://doi.org/10.1016/j.abb.2016.04.018

    Article  CAS  PubMed  Google Scholar 

  43. A.F. De Faria, F. Perreault, E. Shaulsky, L.H. Arias Chavez, M. Elimelech, Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide-silver nanocomposites. ACS Appl. Mater. Interfaces 7, 12751–12759 (2015). https://doi.org/10.1021/acsami.5b01639

    Article  CAS  PubMed  Google Scholar 

  44. T. Vi, S. RajeshKumar, B. Rout, C.-H. Liu, C.-B. Wong, C.-W. Chang, C.-H. Chen, D. Chen, S. Lue, The preparation of graphene oxide-silver nanocomposites: the effect of silver loads on gram-positive and gram-negative antibacterial activities. Nanomaterials 8, 163 (2018). https://doi.org/10.3390/nano8030163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. M. Moghayedi, H. Ahmadzadeh, K. Ghazvini, E.K. Goharshadi, Neglected antibacterial activity of ethylene glycol as a common solvent. Microb. Pathog. 107, 457–461 (2017). https://doi.org/10.1016/j.micpath.2017.04.022

    Article  CAS  PubMed  Google Scholar 

  46. C. Liao, Y. Li, S. Tjong, Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci. 20, 449 (2019). https://doi.org/10.3390/ijms20020449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. M.A. Ahmad, S. Aslam, F. Mustafa, U. Arshad, Synergistic antibacterial activity of surfactant free Ag-GO nanocomposites. Sci. Rep. 11, 1–9 (2021). https://doi.org/10.1038/s41598-020-80013-w

    Article  CAS  Google Scholar 

  48. F. Farsinia, E.K. Goharshadi, N. Ramezanian, M.M. Sangatash, M. Moghayedi, Antimicrobial waterborne acrylic paint by the additive of graphene nanosheets/silver nanocomposite. Mater. Chem. Phys. 297, 127355 (2023). https://doi.org/10.1016/j.matchemphys.2023.127355

    Article  CAS  Google Scholar 

  49. K. Gold, B. Slay, M. Knackstedt, A.K. Gaharwar, Antimicrobial activity of metal and metal-oxide based nanoparticles. Adv. Ther. 1, 1700033 (2018). https://doi.org/10.1002/adtp.201700033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Ferdowsi University of Mashhad as well as Mashhad University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Marjan Moghayedi: Data curation; Formal analysis; Investigation; Methodology; Resources; Software; Validation; Visualization; Roles/Writing—original draft; Writing—review & editing. Dr. Elaheh K. Goharshadi: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Project administration; Supervision; Validation; Visualization; Writing—review & editing. Dr. Kiarash Ghazvini: Conceptualization; Data curation; Formal analysis; Methodology; Project administration; Supervision; Validation; Visualization; Writing—review & editing. Laleh Ranjbaran: Investigation; Methodology; Software; Validation; Visualization; Roles/Writing—original draft.

Corresponding author

Correspondence to Elaheh K. Goharshadi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghayedi, M., Goharshadi, E.K., Ghazvini, K. et al. Assessment of the cytotoxicity of silver-graphene oxide nanocomposites on Escherichia coli and glioblastoma cancer cells. J IRAN CHEM SOC (2024). https://doi.org/10.1007/s13738-024-03013-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13738-024-03013-x

Keywords

Navigation