Log in

Catalytic activity of Au–Pd/KIT-6 catalysts on the formic acid decomposition: investigation of calcination temperature and Pd:Au composition

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Hydrogen storage and transportation by chemicals like formic acid (FA) is an important strategy for the suitable application of hydrogen as a green fuel. In the present study, the application of bimetallic Pd/Au catalysts supported on KIT-6 mesoporous silica for catalytic decomposition of formic is investigated. The effect of calcination temperature as well as Au:Pd ratio in Au–Pd/KIT-6 catalysts on FA dehydrogenation reaction in the aqueous media was studied. Among the catalysts used, Au1–Pd17/KIT-6 which calcined at 350 °C by having 0.2% Au and 0.27% Pd, showed the best activity by releasing a total gas volume of 142 mL. The sample was exposed to oxygen fellow for activation before the FA decomposition reaction. The optimum reaction conditions were 1 mL FA (98%), 1 mL sodium formate (1 M), and 65 °C. The results showed the calcination temperature plays a critical role in the catalytic activity of these bimetallic catalysts. Also, it was confirmed that both the metal-support and the metal–metal interactions are responsible for production of hydrogen from formic acid. The physicochemical properties of samples were analyzed by various techniques such as SEM, XRD, ICP-EOS, nitrogen adsorption–desorption, and FT-IR spectroscopy. The selected catalyst was regenerated and reused for four successive runes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Tedsree, T. Li, S. Jones, C.W.A. Chan, K.M.K. Yu, P.A.J. Bagot, E.A. Marquis, G.D.W. Smith, S.C.E. Tsang, Nat. Nanotechnol. 6, 302–307 (2011)

    Article  CAS  PubMed  Google Scholar 

  2. R. Mehrkhah, K. Goharshadi, E.K. Goharshadi, H.S. Sajjadizadeh, ChemistrySelect 8, e202204386 (2023)

    Article  CAS  Google Scholar 

  3. Q. Bi, X. Du, Y. Liu, Y. Cao, H. He, K. Fan, J. Am. Chem. Soc. 134, 8926–8933 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. X. Zhang, N. Shang, X. Zhou, C. Feng, S. Gao, Q. Wu, Z. Wang, C. Wang, New J. Chem. 41, 3443–3449 (2017)

    Article  CAS  Google Scholar 

  5. R. Mehrkhah, M.M. Ghafurian, H. Niazmand, E.K. Goharshadi, O. Mahian, in Advances in nanofluid heat transfer, Elsevier, 265–301 (2022)

  6. M. Zendehdel, F. Tavakoli, Functionalizing. J. Iran. Cheml Soc 19, 1095–1107 (2022)

    Article  CAS  Google Scholar 

  7. J.A. Turner, Science 305, 972–974 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. R. Mehrkhah, E.K. Goharshadi, E. Lichtfouse, H.S. Ahn, S. Wongwises, W. Yu, O. Mahian, Environ. Chem. Lett. 21, 285–318 (2023)

    Article  CAS  Google Scholar 

  9. T. Feng, J. Wang, S. Gao, C. Feng, N. Shang, C. Wang, Appl. Surf. Sci. 469, 431–436 (2019)

    Article  CAS  Google Scholar 

  10. N. Norouzi, S. Talebi, Iran. J. Chem. Chem. Eng. 41, 1436–1457 (2022)

    CAS  Google Scholar 

  11. M. Navlani-García, D. Salinas-Torres, K. Mori, Y. Kuwahara, H. Yamashita, Int. J. Hydrog. Energy 44, 28483–28493 (2019)

    Article  Google Scholar 

  12. S. Hafeez, E. Harkou, A. Spanou, S.M. Al-Salem, A. Villa, N. Dimitratos, G. Manos, A. Constantinou, Mater Today Chem. 26, 101120 (2022)

    Article  CAS  Google Scholar 

  13. I. Dutta, S. Chatterjee, H. Cheng, R.K. Parsapur, Z. Liu, Z. Li, E. Ye, H. Kawanami, J.S.C. Low, Z. Lai, X.J. Loh, Adv. Energy Mater. 12, 2103799 (2022)

    Article  CAS  Google Scholar 

  14. S. Shaybanizadeh, A. Najafi Chermahini, R. Luque, Nanotechnology, 33, 275601 (2022)

  15. J. Mielby, A.J. Kunov-kruse, S. Kegnæs, J. Catal. 345, 149–15 (2017) 6

  16. R. Wölfel, N. Taccardi, A. Bösmann, P. Wasserscheid, Green Chem. 13, 2759–2763 (2011)

    Article  Google Scholar 

  17. A. Gazsi, T. Bánsági, F. Solymosi, J. Phys. Chem. C 115, 15459–15466 (2011)

    Article  CAS  Google Scholar 

  18. F. Solymosi, Á. Koós, N. Liliom, I. Ugrai, J. Catal. 279, 213–219 (2011)

    Article  CAS  Google Scholar 

  19. R. Nie, Y. Tao, Y. Nie, T. Lu, J. Wang, Y. Zhang, X. Lu, C.C. Xu, ACS Catal. 11, 1071–1095 (2021)

    Article  CAS  Google Scholar 

  20. V. Khorram Abadi, D. Habibi, S. Heydari, M. Mahmoudiani Gilan. J. Iran. Chem. Soc. 20, 1985–1996 (2023)

  21. A. Léval, A. Agapova, C. Steinlechner, E. Alberico, H. Junge, M. Beller, Green Chem. 22, 913–920 (2020)

    Article  Google Scholar 

  22. X. Chen, Y. Liu, J. Wu, Mol. Catal. 483, 110716 (2020)

    Article  CAS  Google Scholar 

  23. J.T. Feaster, C. Shi, E.R. Cave, T. Hatsukade, D.N. Abram, K.P. Kuhl, C. Hahn, J.K. Nørskov, T.F. Jaramillo, ACS Catal. 7, 4822–4827 (2017)

    Article  CAS  Google Scholar 

  24. B. Hu, L. Warczinski, X. Li, M. Lu, J. Bitzer, M. Heidelmann, T. Eckhard, Q. Fu, J. Schulwitz, M. Merko, M. Li, Ang. Chem. Int. Ed. 60, 6807–6815 (2021)

    Article  CAS  Google Scholar 

  25. M. Achour, D. Álvarez-Hernández, E. Ruiz-López, C. Megías-Sayago, F. Ammari, S. Ivanova, M.Á. Centeno, Tetrahedron Green Chem. 2, 100020 (2023)

    Article  Google Scholar 

  26. A Yazdani, A. Najafi Chermahini, M. Esmaeilzadeh Khabazi, Mol. Catal. 524, 112337 (2022)

  27. O. Sneka-Płatek, K. Kaźmierczak, M. Jędrzejczyk, P. Sautet, N. Keller, C. Michel, A.M. Ruppert, Int. J. Hydrog. Energy 45, 17339–17353 (2020)

    Article  Google Scholar 

  28. P. Nagaiah, P. Gidyonu, M. Ashokraju, M.V. Rao, P. Challa, D.R. Burri, S.R.R. Kamaraju, ChemistrySelect 4, 145–151 (2019)

    Article  CAS  Google Scholar 

  29. F. Valentini, V. Kozell, C. Petrucci, A. Marrocchi, Y. Gu, D. Gelman, L. Vaccaro, Energy Environ. Sci. 12, 2646–2664 (2019)

    Article  CAS  Google Scholar 

  30. J. Liu, L. Lan, X. Liu, X. Yang, X. Wu, Int. J. Hydrog. Energy 46, 6395–6403 (2021)

    Article  CAS  Google Scholar 

  31. I. Barlocco, S. Capelli, E. Zanella, X. Chen, J.J. Delgado, A. Roldan, N. Dimitratos, A. Villa J. Energy Chem. 52, 301–309 (2021)

    Article  CAS  Google Scholar 

  32. M. Yousefi, H. Eshghi, M. Karimi-Nazarabad, Int. J. Hydrog. Energy 47, 3001–3012 (2022)

    Article  CAS  Google Scholar 

  33. H.Y. Xu, Y. Li, W.S. Wang, X.J. Li, L.M. Dong, J. Iran. Chem. Soc. 20, 2043–2055 (2023)

    Article  CAS  Google Scholar 

  34. H.S. Sajjadizadeh, E.K. Goharshadi, M. Karimi-Nazarabad, Fuel 355, 129544 (2024)

    Article  CAS  Google Scholar 

  35. B.M. Faroldi, J.M. Conesa, A. Guerrero-Ruiz, I. Rodríguez-Ramos, Appl. Catal. A: Gen. 629, 118419 (2022)

    Article  CAS  Google Scholar 

  36. B.S. Choi, J. Song, M. Song, B. Se. Goo, Y.W. Lee, Y. Kim, H. Yang, S.W. Han, ACS Catal. 9, 819–826 (2019)

  37. R.D. Ding, D.D. Li, F. Leng, J.H. Yu, M.J. Jia, J.Q. Xu, Dalton Trans. 51, 8695–8704 (2022)

    Article  CAS  PubMed  Google Scholar 

  38. A.K. Aurnob, K. Ding, D.R. Kauffmanand, J.J. Spivey, Appl. Cata. B: Environ. 322, 122107 (2023)

    Article  CAS  Google Scholar 

  39. S. Wang, J. Zhu, J. Si, G. Zhao, Y. Liu, Y. Lu, J. Catal. 382, 295–304 (2020)

    Article  CAS  Google Scholar 

  40. M. Luneau, E. Guan, W. Chen, A.C. Foucher, N. Marcella, T. Shirman, D.M. Verbart, J. Aizenberg, M. Aizenberg, E.A. Stach, R.J. Madix, Commun. Chem. 3, 46 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  41. T. Elgayyar, J. Schnee, A. Tuel, L. Burel, F. Bosselet, Y. Schuurman, F.C. Meunier, L. Delannoy, C. Thomas, Catal. Sci. Tech. 11, 2908–2914 (2021)

    Article  CAS  Google Scholar 

  42. X. Lou, P. Liu, J. Li, Z. Li, K. He, Appl. Surf. Sci. 307, 382–387 (2014)

    Article  CAS  Google Scholar 

  43. J. Sun, H. Qiu, W. Cao, H. Fu, H. Wan, Z. Xu, S. Zheng, ACS Sustain Chem. Eng. 7, 1963–1972 (2018)

    Article  Google Scholar 

  44. Y. Jiang, M. Chen, Y. Yang, X. Zhang, X. **ao, A. Fan, C. Wang, L. Chen, Nanotechnology 29, 335402 (2018)

    Article  PubMed  Google Scholar 

  45. J. Najafi Sarpiri, A. Najafi Chermahini, M. Saraji, A. Shahvar, J. Iran. Chem. Soc. 18, 2291–2302 (2021)

  46. H. Nazeri, A.N. Chermahini, Z. Mohammadbagheri, M. Prato, Green Energy Environ. 8, 246–257 (2023)

    Article  CAS  Google Scholar 

  47. Z. Li, Z. Zeng, D. Yao, S. Fan, S. Guo, J. Lv, S. Huang, Y. Wang, X. Ma, A.C.S. Sustain, Chem. Eng. 8, 200–209 (2019)

    Google Scholar 

  48. Y. Yuan, J. Wei, L. Geng, D. Mei, L. Liao, RSC Adv. 10, 34187–34196 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. D.D.E. Koyuncu, M. Okur, Sep. Purif. Technol. 257, 117657 (2021)

    Article  Google Scholar 

  50. K. Soni, B.S. Rana, A.K. Sinha, A. Bhaumik, M. Nandi, M. Kumar, G.M. Dhar, Appl. Catal. B Environ. 90, 55–63 (2009)

    Article  CAS  Google Scholar 

  51. A. Baylet, P. Marecot, D. Duprez, P. Castellazzi, G. Groppi, P. Forzatti, Phys. Chem. Chem. Phys. 13, 4607–4613 (2011)

    Article  CAS  PubMed  Google Scholar 

  52. A. Karpenko, R. Leppelt, J. Cai, V. Plzak, A. Chuvilin, U. Kaiser, R.J. Behm, J. Catal. 250, 139–150 (2007)

    Article  CAS  Google Scholar 

  53. A. Boulaoued, I. Fechete, B. Donnio, M. Bernard, P. Turek, F. Garin, Microporous Mesoporous Mater. 155, 131–142 (2012)

    Article  CAS  Google Scholar 

  54. W.Y. Yu, L. Zhang, G.M. Mullen, E.J. Evans Jr., G. Henkelman, C.B. Mullins, Phys. Chem. Chem. Phys. 17, 20588–20596 (2015)

    Article  CAS  PubMed  Google Scholar 

  55. A.M. Venezia, V. La Parola, G. Deganello, B. Pawelec, J.L.G. Fierro, J. Catal. 215, 317–325 (2003)

    Article  CAS  Google Scholar 

  56. A. Cybula, J.B. Priebe, M.M. Pohl, J.W. Sobczak, M. Schneider, A. Zielinska-Jurek, A. Brückner, A. Zaleska, Appl. Catal. B Environ. 152–153, 202–211 (2014)

    Article  Google Scholar 

  57. A.S.K. Hashmi, G.J. Hutchings Angew. Chem. Int. Ed. 45, 7896–7936 (2006)

  58. A. Gazsi, I. Ugrai, F. Solymosi, Appl. Catal. A 391, 360–366 (2011)

  59. A.A. Herzing, A.F. Carley, J.K. Edwards, G.J. Hutchings, C.J. Kiely, Chem. Mater. 20, 1492–1501 (2008)

    Article  CAS  Google Scholar 

  60. Q.Y. Bi, J.D. Lin, Y.M. Liu, F.Q. Huang, Y. Cao, Int. J. Hydrog. Energy 41, 21193–21202 (2016)

    Article  CAS  Google Scholar 

  61. S.H. Prakash, S.M. Roopan, J. Iran. Chem. Soc. 20, 291–317 (2023)

    Article  Google Scholar 

  62. J.L. Fiorio, N. López, L.M. Rossi, ACS Catal. 7, 2973–2980 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by Isfahan University of Technology (IRAN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Najafi Chermahini.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbanpour, F., Najafi Chermahini, A. & Shaybanizadeh, S. Catalytic activity of Au–Pd/KIT-6 catalysts on the formic acid decomposition: investigation of calcination temperature and Pd:Au composition. J IRAN CHEM SOC 21, 1341–1351 (2024). https://doi.org/10.1007/s13738-024-03002-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-024-03002-0

Keywords

Navigation