Log in

Evaluation of the enzymatic activity of catalase in aqueous mediums of basic amino acids based deep eutectic solvents

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

We analyzed catalase's function, structure, and thermal stability in two basic amino acid-based deep eutectic solvents due to the importance of studying the enzymatic behavior in suitable non-aqueous media. We used various UV-visible spectroscopic methods, fluorescence, and circular dichroism (CD). Combining arginine with glycerol and lysine with glycerol was applied to form two distinct amino acid-based deep eutectic solvents.

Kinetic studies showed that forming an intricate hydrogen bond network between glycerol and amino acid components in arginine or lysine-based aqueous deep eutectic solvents of 45% and 40%, respectively, keeps the catalase activity near 50%. Our outcomes demonstrated that the intrinsic fluorescence of the catalase is quenched by increasing the concentration of these solvents via a static mechanism. Also, CD results have further represented remarkable changes in arginine-glycerol and lysine-glycerol solvents with a diminished α-helical content and an increase in β-pleated sheets content. Studies of the thermal stability of catalase in the presence of these solvents showed that with increasing concentration of these solvents, the thermal stability of enzyme (Tm and ΔG° values) decreases.

Finally, the above data suggested that arginine and lysine with chaotropic factors of guanidine and ammonium in their functional group, respectively, act as influential factors in the activity and structural stability of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.R. Harifi-Mood, R. Ghobadi, A. Divsalar, Int. J. Biol. Macromol. 95, 115–120 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. H. Vanda et al., Comptes Rendus Chim. 21, 628–638 (2018)

    Article  CAS  Google Scholar 

  3. A. Paiva et al., ACS Sustain. Chem. Eng.. 2, 1063–1071 (2014)

    Article  CAS  Google Scholar 

  4. A. Shishov et al., Microchem. J. 135, 33–38 (2017)

    Article  CAS  Google Scholar 

  5. Y.P. Mbous et al., Biotechnol. Adv.. 35, 105–134 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. S. Mouden et al., Phytochem. Rev. 16, 935–951 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. B.B. Hansen et al., Chem. Rev. 121, 1232–1285 (2020)

    Article  PubMed  Google Scholar 

  8. M.S. Rahman et al., J. Mol. Liq. 321, 114745 (2021)

    Article  CAS  Google Scholar 

  9. Y. Liu et al., J. Nat. Prod. 81, 679–690 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. B. Koohshekan et al., J. Mol. Liq. 218, 8–15 (2016)

    Article  CAS  Google Scholar 

  11. Vitolo, M., World J, Pharm. Pharm. Sci. 10, 47 (2021)

    Google Scholar 

  12. C. Glorieux, P.B. Calderon, Biol. Chem. 398, 1095–1108 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. M. Galasso et al., Free Radic. Biol. Med. 172, 264–272 (2021)

    Article  CAS  PubMed  Google Scholar 

  14. O. Abazari, A. Divsalar, R. Ghobadi, J. Biomol. Struct. Dyn. 38, 609–615 (2020)

    Article  CAS  PubMed  Google Scholar 

  15. M.M. Goyal, A. Basak, Protein Cell 1, 888–897 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. L. Góth, T. Nagy, Arch. Biochem. Biophys. 525, 195–200 (2012)

    Article  PubMed  Google Scholar 

  17. A. Goulas et al., Neurosci. Lett. 330, 210–212 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. M. Asaduzzaman Khan et al., Chin. J. Cancer Res. 22, 87–92 (2010)

    Article  Google Scholar 

  19. J. Kaushal et al., Biocatal. Agric. Biotechnol. 16, 192–199 (2018)

    Article  Google Scholar 

  20. K. Czyzewska, A. Trusek, Pol. J. Chem. Technol. 20, 39–43 (2018)

    Article  CAS  Google Scholar 

  21. R. Ghobadi, A. Divsalar, J. Mol. Liq. 310, 113207 (2020)

    Article  CAS  Google Scholar 

  22. X. Tian, S. Zhang, L. Zheng, J. Microbiol. Biotechnol. 26, 80–88 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. J.T. Gorke, F. Srienc, R.J. Kazlauskas, Chem. Commun. (2008). https://doi.org/10.1039/b716317g

    Article  Google Scholar 

  24. Y. Huang et al., Food Chem. 221, 1400–1405 (2017)

    Article  CAS  PubMed  Google Scholar 

  25. M.J. Lopez, S.S. Mohiuddin, Biochemistry, Essential Amino Acids (StatPearls Publishing, Treasure Island (FL), 2022)

    Google Scholar 

  26. G. Wu, Amino Acids 37, 1–17 (2009)

    Article  PubMed  Google Scholar 

  27. Z. Yang, J. Biotechnol. 144, 12–22 (2009)

    Article  CAS  PubMed  Google Scholar 

  28. H. Ren et al., J. Clean. Prod. 193, 802–810 (2018)

    Article  CAS  Google Scholar 

  29. H. Aebi, [13] Catalase in vitro, in Methods in enzymology. (Elsevier, Netherlands, 1984), pp.121–126

    Google Scholar 

  30. Y. Dai et al., Food Chem. 187, 14–19 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. F. Gabriele et al., J. Mol. Liq. 291, 111301 (2019)

    Article  CAS  Google Scholar 

  32. Y. **a et al., Int. J. Biol. Macromol. 40, 437–443 (2007)

    Article  CAS  PubMed  Google Scholar 

  33. K. Prakash et al., Protein Sci. 11, 46–57 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. G. Savelli, N. Spreti, P. Di Profio, Current Opin. Colloid Interface Sci. 5, 111–117 (2000)

    Article  CAS  Google Scholar 

  35. M.N. Jones, A. Finn, A. Mosavi-Movahedi, B.J. Waller, Biochim. Biophys. Acta (BBA) Protein Struct. Mol. Enzymol. 913(3), 395–398 (1987)

    Article  CAS  Google Scholar 

  36. B. Srinivasan, Words Adv. Teach. Enzym. Kinet. 288, 2068–2083 (2021)

    CAS  Google Scholar 

  37. L. Lomba et al., Appl. Sci. 11, 10156 (2021)

    Article  CAS  Google Scholar 

  38. E.M. Elnemma, Bull. Korean Chem. Soc. 25, 127–129 (2004)

    Article  CAS  Google Scholar 

  39. A.A. Saboury, J. Iran. Chem. Soc. 6, 219–229 (2009)

    Article  CAS  Google Scholar 

  40. A.M. Eberhardt et al., Appl. Catal. B Environ. 47, 153–163 (2004)

    Article  CAS  Google Scholar 

  41. A. Cornish-Bowden, Perspect. Sci. 1, 121–125 (2014)

    Article  Google Scholar 

  42. Y. Hu, L. Da, Spectrochim Acta Part A Mol Biomol Spectrosc. 121, 230–237 (2014)

    Article  CAS  Google Scholar 

  43. H. L., S. R., Chem. Lett. 30, 844–845(2001)

  44. S.M. Kelly, T.J. Jess, N.C. Price, Biochim. Biophys. Acta (BBA) Proteins Proteomics 1751, 119–139 (2005)

    Article  CAS  PubMed  Google Scholar 

  45. J. Lloyd, Nat. Phys. Sci. 231, 64–65 (1971)

    Article  CAS  Google Scholar 

  46. F.M. Najjar et al., Int. J. Biol. Macromol. 95, 550–556 (2017)

    Article  Google Scholar 

  47. A.A. Saboury, A.A. Moosavi-Movahedi, Biochem. EduC. 23, 164–167 (1995)

    Article  CAS  Google Scholar 

  48. A. Moosavi-Movahedi, Pure Appl. Chem. 66, 71–75 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Research Council of Kharazmi University has supported our research. We gratefully acknowledge their support.

Funding

Funding was provided by Kharazmi University, (Grant Number 1402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeleh Divsalar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assar, E., Divsalar, A., Jafari, T. et al. Evaluation of the enzymatic activity of catalase in aqueous mediums of basic amino acids based deep eutectic solvents. J IRAN CHEM SOC 20, 2879–2888 (2023). https://doi.org/10.1007/s13738-023-02884-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02884-w

Keywords

Navigation