Log in

Bio-sorbents derived from agricultural biomass for the removal of emerging pollutants and its adsorption mechanisms

  • Review Papers
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The presence of emerging pollutants in water bodies has become a significant concern due to their potential adverse effects on human health and the environment. In recent years, bio-sorbents have emerged as promising alternatives for the removal of emerging pollutants due to their eco-friendly nature, cost-effectiveness, and high adsorption capacities. However, primary biochar has some drawbacks like the least adsorption capacity and small sorption limits. However, biochar must be improved in order to be used in the treatment of emulsifiable concentrate water. Number of attempt has been made on the confiscation of ECs from effluents by modified biochar (mBC) are currently available. Functionalizing biochar involves modifying its surface properties to enhance its performance in different applications. These modifications can be achieved through various techniques, leading to biochars with different physicochemical properties. The impacts, behaviors, and adsorption processes of customized biochar on various Environmental Pollutants (EPs) depend on these variations. It is vital to evaluate and assimilate information regarding EC adsorption in a systematic manner. Concerning modified biochar. The first method for removing EC from charcoal is discussed in this review paper. The performance and adsorption mechanism of mBC on conventional EPs are examined. Ultimately, the leading study trends and developments, along with ideas and recommendations for impending progress, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. N. Cheng, B. Wang, P. Wu, X. Lee, Y. **ng, M. Chen et al., Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. Environ. Pollut. 273, 116448 (2021)

    Article  CAS  PubMed  Google Scholar 

  2. M. Kumar, D.K. Sarma, S. Shubham, M. Kumawat, V. Verma, A. Prakash et al., Environmental endocrine-disrupting chemical exposure: Role in non-communicable diseases. Front. Public Health 8, 553850 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  3. E. Nilsen, K.L. Smalling, L. Ahrens, M. Gros, K.S. Miglioranza, Y. Picó et al., Critical review: Grand challenges in assessing the adverse effects of contaminants of emerging concern on aquatic food webs. Environ. Toxicol. Chem. 38, 46–60 (2019)

    Article  CAS  PubMed  Google Scholar 

  4. S. Nataraj, Emerging Pollutant Treatment in Wastewater (CRC Press, Florida, 2022)

    Book  Google Scholar 

  5. A. Kumar, A. Rana, G. Sharma, M. Naushad, P. Dhiman, A. Kumari et al., Recent advances in nano-Fenton catalytic degradation of emerging pharmaceutical contaminants. J. Mol. Liq. 290, 111177 (2019)

    Article  CAS  Google Scholar 

  6. G. Crini, Non-conventional low-cost adsorbents for dye removal: a review. Biores. Technol. 97, 1061–1085 (2006)

    Article  CAS  Google Scholar 

  7. S. Holliday, R.S. Ashraf, A. Wadsworth, D. Baran, S.A. Yousaf, C.B. Nielsen et al., High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 7, 1–11 (2016)

    Article  Google Scholar 

  8. B.H. Hameed, Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. J. Hazard. Mater. 161, 753–759 (2009)

    Article  CAS  PubMed  Google Scholar 

  9. M. Ahmaruzzaman, Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv. Coll. Interface Sci. 143, 48–67 (2008)

    Article  CAS  Google Scholar 

  10. F.L. Braghiroli, H. Bouafif, C.M. Neculita, A. Koubaa, Activated biochar as an effective sorbent for organic and inorganic contaminants in water. Water Air Soil Pollut. 229, 1–22 (2018)

    Article  CAS  Google Scholar 

  11. A.U. Rajapaksha, S.S. Chen, D.C. Tsang, M. Zhang, M. Vithanage, S. Mandal et al., Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148, 276–291 (2016)

    Article  CAS  PubMed  Google Scholar 

  12. D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman Jr., Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Biores. Technol. 160, 191–202 (2014)

    Article  CAS  Google Scholar 

  13. M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan et al., Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99, 19–33 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. Y. Dai, N. Zhang, C. **ng, Q. Cui, Q. Sun, The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review. Chemosphere 223, 12–27 (2019)

    Article  CAS  PubMed  Google Scholar 

  15. M. Zhang, B. Gao, Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chem. Eng. J. 226, 286–292 (2013)

    Article  CAS  Google Scholar 

  16. J. Huang, A.R. Zimmerman, H. Chen, B. Gao, Ball milled biochar effectively removes sulfamethoxazole and sulfapyridine antibiotics from water and wastewater. Environ. Pollut. 258, 113809 (2020)

    Article  CAS  PubMed  Google Scholar 

  17. X.-R. **g, Y.-Y. Wang, W.-J. Liu, Y.-K. Wang, H. Jiang, Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chem. Eng. J. 248, 168–174 (2014)

    Article  CAS  Google Scholar 

  18. P. Sun, Y. Li, T. Meng, R. Zhang, M. Song, J. Ren, Removal of sulfonamide antibiotics and human metabolite by biochar and biochar/H2O2 in synthetic urine. Water Res. 147, 91–100 (2018)

    Article  CAS  PubMed  Google Scholar 

  19. L. Tang et al., Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chem. Eng. J. 336, 160–169 (2018)

    Article  CAS  Google Scholar 

  20. L. **e, D. Yang, Q. Lu, H. Zhang, H. Zeng, Role of molecular architecture in the modulation of hydrophobic interactions. Curr. Opin. Coll. Interface Sci. 47, 58–69 (2020)

    Article  CAS  Google Scholar 

  21. L. Zhou, C. Richard, C. Ferronato, J.-M. Chovelon, M. Sleiman, Investigating the performance of biomass-derived biochars for the removal of gaseous ozone, adsorbed nitrate and aqueous bisphenol A. Chem. Eng. J. 334, 2098–2104 (2018)

    Article  CAS  Google Scholar 

  22. L. Yan et al., ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. Bioresour. Technol. 297, 122381 (2020)

    Article  CAS  PubMed  Google Scholar 

  23. M. Inyang, B. Gao, A. Zimmerman, Y. Zhou, X. Cao, Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars. Environ. Sci. Pollut. Res. 22(3), 1868–1876 (2015)

    Article  CAS  Google Scholar 

  24. V.-T. Nguyen et al., Efficient heterogeneous activation of persulfate by iron-modified biochar for removal of antibiotic from aqueous solution: a case study of tetracycline removal. Catalysts 9(1), 49 (2019)

    Article  Google Scholar 

  25. H. Huang, J. Tang, K. Gao, R. He, H. Zhao, D. Werner, Characterization of KOH modified biochars from different pyrolysis temperatures and enhanced adsorption of antibiotics. RSC Adv. 7(24), 14640–14648 (2017)

    Article  CAS  Google Scholar 

  26. D. Shan et al., Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. J. Hazard. Mater. 305, 156–163 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. K.-W. Jung, S.Y. Lee, Y.J. Lee, J.-W. Choi, Ultrasound-assisted heterogeneous Fenton-like process for bisphenol A removal at neutral pH using hierarchically structured manganese dioxide/biochar nanocomposites as catalysts. Ultrason. Sonochemistry 57, 22–28 (2019)

    Article  CAS  Google Scholar 

  28. J. Wu, J. Lu, C. Zhang, Z. Zhang, X. Min, Adsorptive removal of tetracyclines and fluoroquinolones using yak dung biochar. Bull. Environ. Contam. Toxicol. 102(3), 407–412 (2019)

    Article  CAS  PubMed  Google Scholar 

  29. T. Chen et al., Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure. Bioresour. Technol. 267, 431–437 (2018)

    Article  CAS  PubMed  Google Scholar 

  30. H.M. Jang, S. Yoo, Y.-K. Choi, S. Park, E. Kan, Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar. Bioresour. Technol. 259, 24–31 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. S.-H. Lin, R.-S. Juang, Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review. J. Environ. Manag. 90(3), 1336–1349 (2009)

    Article  CAS  Google Scholar 

  32. M. Ahmad, A.R. Usman, M.I. Rafique, M.I. Al-Wabel, Engineered biochar composites with zeolite, silica, and nano-zerovalent iron for the efficient scavenging of chlortetracycline from aqueous solutions. Environ. Sci. Pollut. Res. 26(15), 15136–15152 (2019)

    Article  CAS  Google Scholar 

  33. R.-Z. Wang et al., Synergistic removal of copper and tetracycline from aqueous solution by steam-activated bamboo-derived biochar. J. Hazard. Mater. 384, 121470 (2020)

    Article  CAS  PubMed  Google Scholar 

  34. R. Li et al., Removing tetracycline and Hg (II) with ball-milled magnetic nanobiochar and its potential on polluted irrigation water reclamation. J. Hazard. Mater. 384, 121095 (2020)

    Article  CAS  PubMed  Google Scholar 

  35. X.-F. Tan et al., Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresour. Technol. 212, 318–333 (2016)

    Article  CAS  PubMed  Google Scholar 

  36. T. Sizmur, T. Fresno, G. Akgül, H. Frost, E. Moreno-Jiménez, Biochar modification to enhance sorption of inorganics from water. Bioresour. Technol. 246, 34–47 (2017)

    Article  CAS  PubMed  Google Scholar 

  37. J. Wang, S. Wang, Preparation, modification and environmental application of biochar: a review. J. Clean. Prod. 227, 1002–1022 (2019)

    Article  CAS  Google Scholar 

  38. X. Yang, S. Zhang, M. Ju, L. Liu, Preparation and modification of biochar materials and their application in soil remediation. Appl. Sci. 9, 1365 (2019)

    Article  CAS  Google Scholar 

  39. I.P. Silva, R.M. Lima, G.F. Silva, D.S. Ruzene, D.P. Silva, Thermodynamic equilibrium model based on stoichiometric method for biomass gasification: a review of model modifications. Renew. Sustain. Energy Rev. 114, 109305 (2019)

    Article  CAS  Google Scholar 

  40. Y. Wang, J. Sun, B. He, M. Feng, Synthesis and modification of biomass derived carbon dots in ionic liquids and their application: a mini review. Green Chem. Eng. 1, 94–108 (2020)

    Article  Google Scholar 

  41. M. Aira, F. Monroy, J. Domínguez, Earthworms strongly modify microbial biomass and activity triggering enzymatic activities during vermicomposting independently of the application rates of pig slurry. Sci. Total Environ. 385, 252–261 (2007)

    Article  CAS  PubMed  Google Scholar 

  42. E.F. Iliopoulou, S. Stefanidis, K. Kalogiannis, A. Delimitis, A. Lappas, K. Triantafyllidis, Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Appl. Catal. B 127, 281–290 (2012)

    Article  CAS  Google Scholar 

  43. Y.-T. Liao, B.M. Matsagar, K.C.-W. Wu, Metal–organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass. ACS Sustain. Chem. Eng. 6, 13628–13643 (2018)

    Article  CAS  Google Scholar 

  44. W. Yang, Y. Li, S. Shi, H. Chen, Y. Shan, Y. Liu, Mercury removal from flue gas by magnetic iron-copper oxide modified porous char derived from biomass materials. Fuel 256, 115977 (2019)

    Article  CAS  Google Scholar 

  45. L. Gao, J.L. Goldfarb, Characterization and adsorption applications of composite biochars of clay minerals and biomass. Environ. Sci. Pollut. Res. 28, 44277–44287 (2021)

    Article  CAS  Google Scholar 

  46. Y. Li, B. **ng, Y. Ding, X. Han, S. Wang, A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Biores. Technol. 312, 123614 (2020)

    Article  CAS  Google Scholar 

  47. A. Bhatnagar, M. Sillanpää, A. Witek-Krowiak, Agricultural waste peels as versatile biomass for water purification–a review. Chem. Eng. J. 270, 244–271 (2015)

    Article  CAS  Google Scholar 

  48. K.D. Elsbach, Managing organizational legitimacy in the California cattle industry: the construction and effectiveness of verbal accounts. Adm. Sci. Q. 39, 57–88 (1994)

    Article  Google Scholar 

  49. S. Hu, Y. Zhang, G. Shen, H. Zhang, Z. Yuan, W. Zhang, Adsorption/desorption behavior and mechanisms of sulfadiazine and sulfamethoxazole in agricultural soil systems. Soil Tillage Res. 186, 233–241 (2019)

    Article  Google Scholar 

  50. Y. Xu, W. Yu, Q. Ma, H. Zhou, Interactive effects of sulfadiazine and Cu(II) on their sorption and desorption on two soils with different characteristics. Chemosphere 138, 701–707 (2015)

    Article  CAS  PubMed  Google Scholar 

  51. Q. Wu, Z. Li, H. Hong, Adsorption of the quinolone antibiotic nalidixic acid onto montmorillonite and kaolinite. Appl. Clay Sci. 74, 66–73 (2013)

    Article  CAS  Google Scholar 

  52. M. Dong, L. He, M. Jiang, Y. Zhu, J. Wang, W. Gustave et al., Biochar for the removal of emerging pollutants from aquatic systems: A review. Int. J. Environ. Res. Public Health 20, 1679 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. J. Dai, X. Meng, Y. Zhang, Y. Huang, Effects of modification and magnetization of rice straw derived biochar on adsorption of tetracycline from water. Bioresour. Technol. 311, 123455 (2020)

    Article  CAS  PubMed  Google Scholar 

  54. Y. Yao, Y. Zhang, B. Gao, R. Chen, F. Wu, Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse. Environ. Sci. Pollut. Res. 25(26), 25659–25667 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dawood University of Engineering and Technology for the providing laboratory facilities and chemicals for research work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors do write manuscript and proof reading.

Corresponding author

Correspondence to Abdul Sattar Jatoi.

Ethics declarations

Conflict of interest

Author declare that no conflict of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jatoi, A.S., Nguyen, H.M., Ahmed, J. et al. Bio-sorbents derived from agricultural biomass for the removal of emerging pollutants and its adsorption mechanisms. J IRAN CHEM SOC 20, 2457–2470 (2023). https://doi.org/10.1007/s13738-023-02848-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02848-0

Keywords

Navigation