Log in

Ion-pair solvent-based liquid–liquid microextraction and spectrophotometric determination of E102, E110, E124, E129 and E133 in confectioneries and beverages

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In the present study, a new ion-pair solvent including tetra-n-butyl-ammonium iodide and 1-pentanol was prepared for the first time and it was used for microextraction and UV–Vis spectrophotometric determination of tartrazine (E102), sunset yellow (E110), ponceau 4r (E124), allura red (E129) and brilliant blue (E133). Analytical parameters of the procedure such as pH, concentration of ion-pair solvent and its volume, times of vortex and centrifugation were optimized. Interference effect of matrix ions and dyes were investigated after optimization of the parameters. Limits of detection between 24 and 82 μg L−1 and limits of quantification in the range of 80–275 μg L−1 were determined for the examined dyes. Preconcentration factor was obtained as 15 for each of the dyes. Relative standard deviations were found between 3.2 and 6.1%. Linear dynamic ranges were obtained between 0.28 and 20 µg mL−1 for the determined dyes. Procedure was applied to various food samples including energy drinks, powdered juice samples, syrups and candies. Analyte addition-recovery studies were also performed both for validation of procedure and determination of dye concentrations in the real samples. Food dye contents of real samples were determined between 5.9 and 52.4 μg mL−1 for liquid samples and 6.2 and 135.2 μg g−1 for solid samples with satisfactory recovery results ranging from 93 to 103%. Finally, the greenness of the developed procedure was assessed using two tools, the Green Analytical Procedure Index and Analytical Eco-Scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Chen, X. Li, A. Huang, W. Deng, Y. **ao, Food Chem. 364, 130373 (2021). https://doi.org/10.1016/j.foodchem.2021.130373

    Article  CAS  PubMed  Google Scholar 

  2. M. Soylak, Y.E. Unsal, M. Tuzen, Food Chem. Toxicol. 49, 1183–1187 (2011). https://doi.org/10.1016/j.fct.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  3. M. Ghaedi, F.N. Azad, K. Dashtian, S. Hajati, A. Goudarzi, M. Soylak, Spectrochim. Acta A 167, 157–164 (2016). https://doi.org/10.1016/j.saa.2016.05.025

    Article  CAS  Google Scholar 

  4. A.T. Bişgin, Y. Sürme, M. Uçan, I. Narin, Int. J. Food Sci. Technol. 51, 2367–2375 (2016). https://doi.org/10.1111/ijfs.13217

    Article  CAS  Google Scholar 

  5. N. Masoudian, M. Rajabi, M. Ghaedi, A. Asghari, Appl. Organomet. Chem. 32, e4369 (2018). https://doi.org/10.1002/aoc.4369

    Article  CAS  Google Scholar 

  6. M.G. Ravandi, M.R. Fat’hi, New J. Chem. 42, 14901–14908 (2018). https://doi.org/10.1039/c8nj00782a

    Article  CAS  Google Scholar 

  7. A.T. Bişgin, M. Uçan, İ Narin, M. Soylak, Food Anal. Methods 8, 2141–2149 (2015). https://doi.org/10.1007/s12161-015-0099-5

    Article  Google Scholar 

  8. A.T. Bişgin, J. AOAC Int. 103, 1478–1485 (2020). https://doi.org/10.1093/jaoacint/qsaa056

    Article  PubMed  Google Scholar 

  9. E.A.A. Hameed, G.H. Abd-ElHamid, O.M. El-Darder, A.K. Ibrahim, R.A.A. Salam, G.M. Hadad, M.A. Abdelshakour, Food Anal. Methods 15, 3444–3457 (2022). https://doi.org/10.1007/s12161-022-02370-8

    Article  Google Scholar 

  10. A.T. Bişgin, M. Uçan, İ Narin, J. AOAC Int. 98, 946–952 (2015). https://doi.org/10.5740/jaoacint.14-222

    Article  CAS  PubMed  Google Scholar 

  11. S. Zhu, J. Zhou, H. Jia, H. Zhang, Food Chem. 243, 351–356 (2018). https://doi.org/10.1016/j.foodchem.2017.09.141

    Article  CAS  PubMed  Google Scholar 

  12. A.T. Bişgin, J. AOAC Int. 101, 1850–1856 (2018). https://doi.org/10.5740/jaoacint.18-0089

    Article  CAS  PubMed  Google Scholar 

  13. A.T. Bişgin, Iran J. Sci. Technol. Trans. Sci. 45, 163–175 (2021). https://doi.org/10.1007/s40995-020-00989-y

    Article  Google Scholar 

  14. A.M.S.S. Cheibub, E.S.B. de Lyra, B.J. Alves, R.A. Donagemma, A.D.P. Netto, Food Chem. 323, 126811 (2020). https://doi.org/10.1016/j.foodchem.2020.126811

    Article  CAS  Google Scholar 

  15. A. Coloma, M. del Pozo, R. Martínez-Moro, E. Blanco, P. Atienzar, L. Sánchez, M.D. Petit-Domínguez, E. Casero, C. Quintana, Food Chem. 345, 128628 (2021). https://doi.org/10.1016/j.foodchem.2020.128628

    Article  CAS  PubMed  Google Scholar 

  16. Y.M.G.A. Shamari, A.A. Alwarthan, S.M. Wabaidur, M.A. Khan, A.A. Alqadami, M.R. Siddiqui, J. King Saud. Univ. Sci. 32, 1135–1141 (2020). https://doi.org/10.1016/j.jksus.2019.10.011

    Article  Google Scholar 

  17. K. Pliuta, A. Chebotarev, A. Pliuta, D. Snigur, Electroanalysis 33, 987–992 (2021). https://doi.org/10.1002/elan.202060367

    Article  CAS  Google Scholar 

  18. J. Feng, J. Li, W. Huang, H. Cheng, Z. Zhang, L. Li, Food Anal. Methods 14, 380–388 (2021). https://doi.org/10.1007/s12161-020-01894-1

    Article  Google Scholar 

  19. A.T. Bişgin, J. AOAC Int. 102, 181–188 (2019). https://doi.org/10.5740/jaoacint.18-0073

    Article  CAS  Google Scholar 

  20. D. Ge, Z. Shan, T. Pang, X. Lu, B. Wang, Anal. Bioanal. Chem. 413, 3873–3880 (2021). https://doi.org/10.1007/s00216-021-03337-0

    Article  CAS  PubMed  Google Scholar 

  21. Q. Han, Y. Sun, K. Shen, Y. Yan, X. Kang, Food Chem. 347, 129026 (2021). https://doi.org/10.1016/j.foodchem.2021.129026

    Article  CAS  PubMed  Google Scholar 

  22. T. Güray, B. Menevşe, A.A. Yavuz, Spectrochim. Acta A 243, 118800 (2020). https://doi.org/10.1016/j.saa.2020.118800

    Article  CAS  Google Scholar 

  23. S.V. Smirnova, K.A. Lyskovtseva, I.V. Pletnev, Microchem. J. 162, 105833 (2021). https://doi.org/10.1016/j.microc.2020.105833

    Article  CAS  Google Scholar 

  24. A. Asfaram, M. Ghaedi, A. Goudarzi, M. Soylak, RSC Adv. 5, 39084–39096 (2015). https://doi.org/10.1039/c5ra02214b

    Article  CAS  Google Scholar 

  25. S. Sadeghi, Z. Nasehi, Spectrochim. Acta A 201, 134–142 (2018). https://doi.org/10.1016/j.saa.2018.04.061

    Article  CAS  Google Scholar 

  26. M. Soylak, M. Celik, F. Uzcan, Int. J. Environ. Anal. Chem. 100, 935–944 (2020). https://doi.org/10.1080/03067319.2019.1645842

    Article  CAS  Google Scholar 

  27. M. Hassan, F. Uzcan, U. Alshana, M. Soylak, Food Chem. 348, 129053 (2021). https://doi.org/10.1016/j.foodchem.2021.129053

    Article  CAS  PubMed  Google Scholar 

  28. U. Balcık, D.S. Chormey, M.F. Ayyıldız, S. Bakırdere, Microchem. J. 155, 104712 (2020). https://doi.org/10.1016/j.microc.2020.104712

    Article  CAS  Google Scholar 

  29. D. Yuvali, M. Seyhaneyildizi, M. Soylak, İ Narin, E. Yilmaz, Spectrochim. Acta A 244, 118842 (2021). https://doi.org/10.1016/j.saa.2020.118842

    Article  CAS  Google Scholar 

  30. M. Nemati, M.A. Farajzadeh, A. Mohebbi, M.R. Sehatkhah, M.R.A. Mogaddam, Microchem. J. 159, 105496 (2020). https://doi.org/10.1016/j.microc.2020.105496

    Article  CAS  Google Scholar 

  31. M.A. Farajzadeh, M.R.A. Mogaddam, H.R. Shahbaazi, Food Anal. Methods 9, 1096–1105 (2016). https://doi.org/10.1007/s12161-015-0279-3

    Article  Google Scholar 

  32. W. Liu, B. Zong, X. Wang, J. Cai, J. Yu, RSC Adv. 9, 17432–17439 (2019). https://doi.org/10.1039/c9ra01405e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. A. Pochivalov, P. Davletbaeva, K. Cherkashina, A. Lezov, C. Vakh, A. Bulatov, J. Mol. Liq. 271, 807–814 (2018). https://doi.org/10.1016/j.molliq.2018.09.072

    Article  CAS  Google Scholar 

  34. N.A.N.M. Yusoff, N.Y. Rahim, R.E.A. Mohammad, N. Yahaya, M. Miskam, R. Soc. Open Sci. 8, 202061 (2021). https://doi.org/10.1098/rsos.202061

    Article  CAS  Google Scholar 

  35. M. Faraji, J. Chromotogr. A 1591, 15–23 (2019). https://doi.org/10.1016/j.chroma.2019.01.022

    Article  CAS  Google Scholar 

  36. T.R. Sekharan, R.M. Chandira, S. Tamilvanan, S.C. Rajesh, B.S. Venkateswarlu, Biointerface Res. Appl. Chem. 12, 847–860 (2022). https://doi.org/10.33263/BRIAC121.847860

    Article  CAS  Google Scholar 

  37. K.A. Omar, R. Sadeghi, J. Iran. Chem. Soc. 19, 3529–3537 (2022). https://doi.org/10.1007/s13738-022-02547-2

    Article  CAS  Google Scholar 

  38. A. Wakisaka, T. Ohki, T. Iwakami, M. Nakagawa, J. Mol. Liq. 149, 45–51 (2009). https://doi.org/10.1016/j.molliq.2009.08.003

    Article  CAS  Google Scholar 

  39. N. Altunay, A. Elik, R. Gürkan, Food Chem. 310, 125933 (2020). https://doi.org/10.1016/j.foodchem.2019.125933

    Article  CAS  PubMed  Google Scholar 

  40. F. Aydin, E. Yilmaz, M. Soylak, Food Chem. 243, 442–447 (2018). https://doi.org/10.1016/j.foodchem.2017.09.154

    Article  CAS  PubMed  Google Scholar 

  41. M. Gómez, V. Arancibia, C. Rojas, E. Nagles, Int. J. Electrochem. Sci. 7, 7493–7502 (2012)

    Article  Google Scholar 

  42. Z. Erbas, M. Soylak, J. Iran. Chem. Soc. 19, 3935–3942 (2022). https://doi.org/10.1007/s13738-022-02579-8

    Article  CAS  Google Scholar 

  43. Z. Gholami, M.H. Marhamatizadeh, S. Yousefinejad, M. Rashedinia, S.M. Mazloomi, Microchem. J. 170, 106671 (2021). https://doi.org/10.1016/j.microc.2021.106671

    Article  CAS  Google Scholar 

  44. H. Wu, J. Guo, L. Du, H. Tian, C. Hao, Z. Wang, J. Wang, Food Chem. 141, 182–186 (2013). https://doi.org/10.1016/j.foodchem.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  45. M.S. Jagirani, F. Uzcan, M. Soylak, J. Iran. Chem. Soc. 18, 1005–1013 (2021). https://doi.org/10.1007/s13738-020-02085-9

    Article  CAS  Google Scholar 

  46. A.T. Bişgin, Microchem. J. 187, 108420 (2023). https://doi.org/10.1016/j.microc.2023.108420

    Article  CAS  Google Scholar 

  47. H. Song, J. Yang, X. Zhu, J. Appl. Polym. Sci. (2022). https://doi.org/10.1002/app.53423

    Article  Google Scholar 

  48. P. Arabkhani, N. Sadeghi, A. Asfaram, Microchem. J. 184, 108149 (2023). https://doi.org/10.1016/j.microc.2022.108149

    Article  CAS  Google Scholar 

  49. G.K. Yıldırım, Y. Sürme, Chem. Pap. 76, 3147–3154 (2022). https://doi.org/10.1007/s11696-022-02086-3

    Article  CAS  Google Scholar 

  50. M. Soylak, F. Uzcan, J. Iran. Chem. Soc. 17, 461–467 (2020). https://doi.org/10.1007/s13738-019-01781-5

    Article  CAS  Google Scholar 

  51. T. Oymak, Ş Tokalıoğlu, Ş Cam, S. Demir, Food Addit. Contam. A 37, 731–741 (2020). https://doi.org/10.1080/19440049.2020.1726501

    Article  CAS  Google Scholar 

  52. S. Duman, M. Soylak, J. Iran. Chem. Soc. (2023). https://doi.org/10.1007/s13738-022-02646-0

    Article  Google Scholar 

  53. A. Dalmaz, S.S. Özak, J. Iran. Chem. Soc. 19, 2359–2366 (2022). https://doi.org/10.1007/s13738-021-02454-y

    Article  CAS  Google Scholar 

  54. H. Song, J. Yang, S. Wan, O. Xu, X. Zhu, Dyes Pigm. 205, 110523 (2022). https://doi.org/10.1016/j.dyepig.2022.110523

    Article  CAS  Google Scholar 

  55. N. Kizil, E. Basaran, D. Erbilgin, M.L. Yola, F. Uzcan, M. Soylak, Microchem. J. 181, 107734 (2022). https://doi.org/10.1016/j.microc.2022.107734

    Article  CAS  Google Scholar 

  56. S.S. Nasrollahi, Y. Yamini, A. Mani-Varnosfaderani, J. Food Compos. Anal. 106, 104339 (2022). https://doi.org/10.1016/j.jfca.2021.104339

    Article  CAS  Google Scholar 

  57. S. Meral, A. Elik, Food Addit. Contam. A 38, 573–585 (2021). https://doi.org/10.1080/19440049.2021.1873427

    Article  CAS  Google Scholar 

  58. F. Uzcan, M. Soylak, Int. J. Environ. Anal. Chem. 102, 1520–1530 (2022). https://doi.org/10.1080/03067319.2020.1738422

    Article  CAS  Google Scholar 

  59. K.A. Lyskovtseva, G.B. Eldyaeva, S.V. Smirnova, I.V. Pletnev, J. Anal. Chem. 77, 1236–1246 (2022). https://doi.org/10.1134/S1061934822100100

    Article  CAS  Google Scholar 

  60. Q. Li, Q. Gao, W. Liu, X. Zhu, J. Cosmet. Sci. 72, 347–361 (2021)

    CAS  PubMed  Google Scholar 

  61. J. Guo, H. Wu, L. Du, Y. Fu, Anal. Methods 5, 4021–4026 (2013). https://doi.org/10.1039/c3ay40362a

    Article  CAS  Google Scholar 

  62. A.T. Bişgin, Z. Nalvuran, O. Gezici, J. AOAC Int. 104, 137–147 (2021). https://doi.org/10.1093/jaoacint/qsaa125

    Article  PubMed  Google Scholar 

  63. N. Pourreza, M. Ghomi, Talanta 84, 240–243 (2011). https://doi.org/10.1016/j.talanta.2010.12.043

    Article  CAS  PubMed  Google Scholar 

  64. J. Płotka-Wasylka, Talanta 181, 204–209 (2018). https://doi.org/10.1016/j.talanta.2018.01.013

    Article  CAS  PubMed  Google Scholar 

  65. A. Gałuszka, P. Konieczka, Z.M. Migaszewski, J. Namieśnik, Trends Anal. Chem. 37, 61–72 (2012). https://doi.org/10.1016/j.trac.2012.03.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported financially by Scientific Project Unit of Niğde Ömer Halisdemir University with project number of FMT 2023/2-BAGEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Taner Bişgin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bişgin, A.T. Ion-pair solvent-based liquid–liquid microextraction and spectrophotometric determination of E102, E110, E124, E129 and E133 in confectioneries and beverages. J IRAN CHEM SOC 20, 2089–2100 (2023). https://doi.org/10.1007/s13738-023-02830-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02830-w

Keywords

Navigation