Log in

Co-active impact of surface hydroxyls on the solvation shell and dye adsorption of Mitragyna Speciosa chlorophyll molecules in dye-sensitised solar cells

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The co-active effects of dual surface hydroxyl, OH of the protic solvent on the dye adsorption and electron injection efficiency of DSSCs are presented in this study. A few polar protic and aprotic solvents were used in the extraction of chlorophyll-based dye sensitiser from mitragyna speciosa (MS) leaves. The existence of chlorophyll and functional groups was detected through the UV–visible and FTIR spectroscopy. Furthermore, the overall performances of the DSSCs were examined through current-to-voltage characteristics, I-V. It was revealed that all protic solvents produced higher dye adsorption as well as higher photocurrent density, JSC, owing to their higher polarisability, better solvation and enriched surface hydroxyl, OH. Aprotic solvent, on the other hand, has limited and weak surface hydroxyl, OH due to the absence of hydrogen bonding, resulting in less dye adsorption on the TiO2 nanoparticle. As a result, the amount of dye-adsorbed and JSC was also reduced. It was discovered that MeOH (protic solvent) has finally contributed to the highest photo-conversion efficiency (PCE) of 0.25%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Gokilamani, N. Muthukumarasamy, M. Thambidurai et al., Dye-sensitized solar cells with natural dyes extracted from rose petals. J. Mater. Sci.: Mater Electron 24, 3394–3402 (2013). https://doi.org/10.1007/s10854-013-1261-8

    Article  CAS  Google Scholar 

  2. M.M. Noor, M.H. Buraidah, S.N.F. Yusuf, M.A. Careem, S.R. Majid, A.K. Arof, Performance of dye-sensitized solar cells with (PVDF-HFP)-KI-EC-PC electrolyte and different dye materials. Int. J. Photoenergy 2011, 1–5 (2011). https://doi.org/10.1155/2011/960487

    Article  CAS  Google Scholar 

  3. M. Gratzel, Photoelectrochemical cells. Nature 414, 338–344 (2001). https://doi.org/10.1038/35104607

    Article  CAS  PubMed  Google Scholar 

  4. K. Wongcharee, V. Meeyoo, S. Chavadej, Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Sol. Energy Mater. Sol. Cells 91, 566–571 (2007). https://doi.org/10.1016/j.solmat.2006.11.005

    Article  CAS  Google Scholar 

  5. M. Shahid, S.U. Islam, F. Mohammad, Recent advancements in natural dye applications: a review. J. Clean. Prod. 53, 310–331 (2013). https://doi.org/10.1016/j.jclepro.2013.03.031

    Article  CAS  Google Scholar 

  6. S. Hao, P. Wu, Y. Huang, J. Lin, Natural dyes as photosensitizers for dye-sensitized solar cell. Sol. Energy 80, 209–214 (2006). https://doi.org/10.1016/j.solener.2005.05.009

    Article  CAS  Google Scholar 

  7. G. Nair et al., Fabrication of organic dye sensitized solar cell. Appl. Mech. Mater. 699, 516–521 (2014). https://doi.org/10.4028/www.scientific.net/AMM.699.516

    Article  CAS  Google Scholar 

  8. A.M. Shahrul, M.H. Abdullah, M.H. Mamat, M.Y. Syarifah Adilah, A.A.A. Samat, I.H. Hamzah, M.A. Yusnita, Z.H. Che Soh, Synergistic role of aluminium sulphate flocculation agent as bi-functional dye additive for Dye-Sensitized Solar Cell (DSSC). Optik 258, 1–11 (2022). https://doi.org/10.1016/j.ijleo.2022.168945

    Article  CAS  Google Scholar 

  9. Warkoyo and E. Saati, The solvent effectiveness on extraction process of seaweed pigment,. MAKARA Technol Ser. 15, 5–8 (2011). https://doi.org/10.7454/mst.v15i1.850

    Article  Google Scholar 

  10. L.K. Singh, T. Karlo, A. Pandey, “Performance of fruit extract of Melastoma malabathricum L. as sensitizer in DSSCs,. Spectrochim. Acta - Part A Mol Biomol. Spectrosc 118, 938–943 (2014). https://doi.org/10.1016/j.saa.2013.09.075

    Article  CAS  Google Scholar 

  11. C.O. Sreekala et al., Influence of solvents and surface treatment on photovoltaic response of dssc based on natural curcumin dye,. IEEE J. Photovoltaics 2, 312–319 (2012). https://doi.org/10.1109/JPHOTOV.2012.2185782

    Article  Google Scholar 

  12. G. Calogero, I. Citro, G. Di Marco, S.A. Minicante, M. Morabito, G. Genovese, Brown seaweed pigment as a dye source for photoelectrochemical solar cells”. Spectrochimica Acta Part A: Mol Biomol Spectr 117, 702–706 (2014). https://doi.org/10.1016/j.saa.2013.09.019

    Article  CAS  Google Scholar 

  13. C.G. Kuo, B.J. Sheen, Seaweed chlorophyll on the light-electron efficiency of DSSC. J. Chin. Chem. Soc. 58, 186–190 (2011). https://doi.org/10.1002/jccs.201190075

    Article  CAS  Google Scholar 

  14. G. Calogero, G. Di Marco, S. Caramori, S. Cazzanti, R. Argazzi, C.A. Bignozzi, Natural dye senstizers for photoelectrochemical cells,. Energy Environ Sci 2, 1162–1172 (2009). https://doi.org/10.1039/b913248c

    Article  CAS  Google Scholar 

  15. M. Zhang et al., Effects of nutrient fertility on growth and alkaloidal content in mitragyna speciosa (Kratom). Front. Plant Sci. 11, 1–12 (2020). https://doi.org/10.3389/fpls.2020.597696

    Article  Google Scholar 

  16. H.K. Lichtenthaler, Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–382 (1987). https://doi.org/10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  17. M.H. Abdullah, M. Rusop, Novel ITO/arc-TiO2 antireflective conductive substrate for transmittance enhanced properties in dye-sensitized solar cells. Microelectron. Eng. 108, 99–105 (2013). https://doi.org/10.1016/j.mee.2013.02.081

    Article  CAS  Google Scholar 

  18. A.A. Khan et al., Magnesium sulfate as a potential dye additive for chlorophyll-based organic sensitiser of the dye-sensitised solar cell (DSSC). Spectrochim Acta Part A Mol. Biomol. Spectrosc 274, 121140 (2022). https://doi.org/10.1016/j.saa.2022.121140

    Article  CAS  Google Scholar 

  19. F. Hölscher, P.R. Trümper, I. Juhász Junger, E. Schwenzfeier-Hellkamp, A. Ehrmann, Application methods for graphite as catalyzer in dye-sensitized solar cells”. Optik (Stuttg) 178, 1276–1279 (2019). https://doi.org/10.1016/j.ijleo.2018.10.123

    Article  CAS  Google Scholar 

  20. P. Gu, D. Yang, X. Zhu, H. Sun, J. Li, Fabrication and characterization of dye-sensitized solar cells based on natural plants. Chem. Phys. Lett. 693, 16–22 (2018). https://doi.org/10.1016/j.cplett.2018.01.008

    Article  CAS  Google Scholar 

  21. A.M. Shahrul et al., Low-cost coagulation treatment of dye sensitizer for improved time immersion of dye-sensitized solar cells (DSSC). Microelectron. Eng. 262, 111832 (2022). https://doi.org/10.1016/j.mee.2022.111832

    Article  CAS  Google Scholar 

  22. H. Bashar et al., Study on combination of natural red and green dyes to improve the power conversion efficiency of dye sensitized solar cells. Optik (Stuttg) 185, 620–625 (2019). https://doi.org/10.1016/j.ijleo.2019.03.043

    Article  CAS  Google Scholar 

  23. A.M. Ammar, H.S.H. Mohamed, M.M.K. Yousef, G.M. Abdel-Hafez, A.S. Hassanien, A.S.G. Khalil, Dye-sensitized solar cells (DSSCs) based on extracted natural dyes. J. Nanomater. 2019, 1–10 (2019). https://doi.org/10.1155/2019/1867271

    Article  CAS  Google Scholar 

  24. M.H. Jung, M.J. Chu, M. Gu Kang, TiO2 nanotube fabrication with highly exposed (001) facets for enhanced conversion efficiency of solar cells. Chem. Commun. 48, 5016–5018 (2012). https://doi.org/10.1039/c2cc31047c

    Article  CAS  Google Scholar 

  25. H. Cheng, A. Selloni, Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2 (101). J. Chem. Phys. (2009). https://doi.org/10.1063/1.3194301

    Article  PubMed  PubMed Central  Google Scholar 

  26. Y. Yin, A. Alivisatos, Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005). https://doi.org/10.1038/nature04165

    Article  CAS  PubMed  Google Scholar 

  27. K. Jasim, Natural dye-sensitized solar cell based on nanocrystalline TiO2. Sains Malaysiana 41, 1011–1016 (2012)

    CAS  Google Scholar 

  28. A. Zdyb, E. Krawczak, Organic dyes in dye-sensitized solar cells featuring back reflector. Energies 14, 1–18 (2021). https://doi.org/10.3390/en14175529

    Article  CAS  Google Scholar 

  29. A.M. Shahrul, M.H. Abdullah, M.Y. Syarifah Adilah, N.S.M. Hadis, A.N.A. Rashid, M.N. Ibrahim, M.H. Mamat, M. Rusop, Coactive impact of a novel multifunctional alum co-adsorbent for dye-sensitized solar cells DSSC. Mater. Lett. 317, 1–4 (2022). https://doi.org/10.1016/j.matlet.2022.132088

    Article  CAS  Google Scholar 

  30. S.M. Gupte, Kinetics of thermal degradation of chlorophyll in spinach puree. J. Food Sci. 29, 379–382 (1964). https://doi.org/10.1111/j.1365-2621.1964.tb01747.x

    Article  CAS  Google Scholar 

  31. M.I. Gunawan, S.A. Barringer, Green color degradation of blanched broccoli (Brassica Oleracea) due to acid and microbial growth. J. Food Process. Preserv. 24, 253–263 (2000). https://doi.org/10.1111/j.1745-4549.2000.tb00417.x

    Article  Google Scholar 

  32. M.I. Minguez-Mosquera, J. Garrido-Fernandez, B. Gandul-Rojas, Pigment changes in olives during fermentation and brine storage”. J. Agric. Food Chem. 37, 8–11 (1989). https://doi.org/10.1021/jf00085a002

    Article  CAS  Google Scholar 

  33. B.T. Gadisa, R. Appiah-Ntiamoah, H. Kim, Amorphous iron sulfide nanowires as an efficient adsorbent for toxic dye effluents remediation. Environ. Sci. Pollut. Res. 26, 2734–2746 (2019). https://doi.org/10.1007/s11356-018-3811-3

    Article  CAS  Google Scholar 

  34. A.A. Khan et al., Synergistic impact of magnesium compound as a potential dye additive for organic-based sensitizer in DSSCs. Mater. Today Commun. 34, 105259 (2023). https://doi.org/10.1016/j.mtcomm.2022.105259

    Article  CAS  Google Scholar 

  35. G.R.A. Kumara, S. Kaneko, M. Okuya, B. Onwona-Agyeman, A. Konno, K. Tennakone, Shiso leaf pigments for dye-sensitized solid-state solar cell. Sol. Energy Mater. Sol. Cells 90, 1220–1226 (2006). https://doi.org/10.1016/j.solmat.2005.07.007

    Article  CAS  Google Scholar 

  36. J. Coates, (2006) Interpretation of infrared spectra, a practical approach, Encycl. Anal. Chem., 1–23 https://doi.org/10.1002/9780470027318.a5606

  37. R. Syafinar, N. Gomesh, M. Irwanto, M. Fareq, Y.M. Irwan, Chlorophyll pigments as nature based dye for dye-sensitized solar cell (DSSC). Energy Procedia 79, 896–902 (2015). https://doi.org/10.1016/j.egypro.2015.11.584

    Article  CAS  Google Scholar 

  38. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Physic Status Solid 15, 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  39. P.R. Jubu, F.K. Yam, V.M. Igba, K.P. Beh, Tauc-plot scale and extrapolation effect on bandgap estimation from UV–vis–NIR data – A case study of β-Ga2O3. J. Solid State Chem. 290, 1–8 (2020). https://doi.org/10.1016/j.jssc.2020.121576

    Article  CAS  Google Scholar 

  40. S. Sreeja, B. Pesala, Co-sensitization aided efficiency enhancement in betanin–chlorophyll solar cell. Mater Renew Sustain Energy 7, 25 (2018). https://doi.org/10.1007/s40243-018-0132-x

    Article  Google Scholar 

  41. I.C. Maurya, P. Srivastava, L. Bahadur, Dye-sensitized solar cell using extract from petals of male flowers Luffa cylindrica L. as a natural sensitizer. Opt. Mater. (Amst) 52, 150–156 (2016). https://doi.org/10.1016/j.optmat.2015.12.016

    Article  CAS  Google Scholar 

  42. W.A. Dhafina, M.Z. Daud, H. Salleh, The sensitization effect of anthocyanin and chlorophyll dyes on optical and photovoltaic properties of zinc oxide based dye-sensitized solar cells. Optik (Stuttg) 207, 163808 (2020). https://doi.org/10.1016/j.ijleo.2019.163808

    Article  CAS  Google Scholar 

  43. M.A. Filler, C. Mui, C.B. Musgrave, S.F. Bent, Competition and Selectivity in the Reaction of Nitriles on Ge(100)−2×1. J. Am. Chem. Soc. 125, 4928–4936 (2003). https://doi.org/10.1021/ja027887e

    Article  CAS  PubMed  Google Scholar 

  44. S.P. Pujari, L. Scheres, A.T.M. Marcelis, H. Zuilhof, Covalent surface modification of oxide surfaces. Angew. Chemie - Int. Ed. 53, 6322–6356 (2014). https://doi.org/10.1002/anie.201306709

    Article  CAS  Google Scholar 

  45. L. Zhang, J.M. Cole, Anchoring groups for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 7(6), 3427–3455 (2015). https://doi.org/10.1021/am507334m

    Article  CAS  PubMed  Google Scholar 

  46. S.E. Koops, B.C. O’Regan, P.R.F. Barnes, J.R. Durrant, Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. J. Am. Chem. Soc. 131, 4808–4818 (2009). https://doi.org/10.1021/ja8091278

    Article  CAS  PubMed  Google Scholar 

  47. K. Murakoshi et al., Importance of binding states between photosensitizing molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell. J. Electroanal. Chem. 396, 27–34 (1995). https://doi.org/10.1016/0022-0728(95)04185-Q

    Article  Google Scholar 

  48. N. Sumanta, C.I. Haque, J. Nishika, R. Suprakash, Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. Res. J. Chem. Sci 4, 2231–2606 (2014). https://doi.org/10.1055/s-0033-1340072

    Article  CAS  Google Scholar 

  49. X. Wang, X. Hao, D. Cai, S. Zhang, X. **a, J. Tu, An ultraviolet polymerized 3D gel polymer electrolyte based on multi-walled carbon nanotubes doped double polymer matrices for lithium-sulfur batteries. Chem. Eng. J. 382, 1–12 (2020). https://doi.org/10.1016/j.cej.2019.122714

    Article  CAS  Google Scholar 

  50. D. Ganta, J. Jara, R. Villanueva, Dye-sensitized solar cells using Aloe Vera and Cladode of Cactus extracts as natural sensitizers. Chem. Phys. Lett. 679, 97–101 (2017). https://doi.org/10.1016/j.cplett.2017.04.094

    Article  CAS  Google Scholar 

  51. S.A. Taya, Dye-sensitized solar cells using fresh and dried natural dyes. Int. J. Mater. Sci. Appl. 2, 37–42 (2013). https://doi.org/10.11648/j.ijmsa.20130202.11

    Article  CAS  Google Scholar 

  52. K. Maabong et al., Natural pigments as photosensitizers for dye-sensitized solar cells with TiO2 thin films. Int. J. Renew. Energy Res. 5, 501–506 (2015). https://doi.org/10.20508/ijrer.v5i2.2161.g6604

    Article  Google Scholar 

  53. M.H. Abdullah, M.Y. Syarifah Adilah, E. Noorsal, C.A.C. Azurahanim, M.H. Mamat, M.K. Ahmad, I.B.S. Banu, M. Rusop, Synergistic effect of complementary organic dye co-sensitizers for potential panchromatic light-harvesting of dye-sensitized solar cells. Opt. Mater. 133, 1–11 (2022). https://doi.org/10.1016/j.optmat.2022.113016

    Article  CAS  Google Scholar 

  54. M.Z. Najihah, I.M. Noor, T. Winie, Long-run performance of dye-sensitized solar cell using natural dye extracted from Costus woodsonii leaves. Opt. Mater. (Amst) 123, 1–9 (2022). https://doi.org/10.1016/j.optmat.2021.111915

    Article  CAS  Google Scholar 

  55. D. Eli, Chlorophyll and betalain as light-harvesting pigments for nanostructured tio based dye-sensitized solar cells. J. Energy Nat. Resour. 5, 53 (2016). https://doi.org/10.11648/j.jenr.20160505.11

    Article  Google Scholar 

  56. M. Abdel-latif, M. Abuiriban, T.M. El-Agez, S. Taya, Dye-sensitized solar cells using dyes extracted from flowers, leaves, parks, and roots of three trees. Int. J. Renew. Energy Res. 5, 294–298 (2015). https://doi.org/10.20508/ijrer.v5i1.2000.g6497

    Article  Google Scholar 

  57. S.A. Taya, T.M. El-Agez, K.S. Elrefi, M.S. Abdel-Latif, Dye-sensitized solar cells based on dyes extracted from dried plant leaves,. Turkish J. Phys. 39, 24–30 (2015). https://doi.org/10.3906/fiz-1312-12

    Article  CAS  Google Scholar 

  58. M.S. Abdel-L et al., Dye-sensitized solar cells using fifteen natural dyes as sensitizers of nanocrystalline TiO2. Sci. Technol. Dev. 34, 135–139 (2015). https://doi.org/10.3923/std.2015.135.139

    Article  Google Scholar 

  59. G.F.C. Mejica, Y. Unpaprom, R. Ramaraj, Fabrication and performance evaluation of dye-sensitized solar cell integrated with natural dye from Strobilanthes cusia under different counter-electrode materials. Appl Nanosci 13, 1073–1083 (2023). https://doi.org/10.1007/s13204-021-01853-0

    Article  CAS  Google Scholar 

  60. A.A. Khan, M.H. Mamat, Z.H. Che Soh, M.F.A. Rahman, N.A. Othman, M. Mokhtar, M.Y. Syarifah Adilah, M.H. Abdullah, Mitragyna speciosa dye sensitiser as the light-harvesting molecules for dye-sensitised solar cells. Jurnal Teknologi 85, 107–113 (2022). https://doi.org/10.11113/jurnalteknologi.v85.18695

    Article  Google Scholar 

  61. S. Tadesse, Natural dye-sensitized solar cells using pigments extracted from Syzygium guineense. J. Photonics Energy 2, 1–11 (2012). https://doi.org/10.1117/1.jpe.2.027001

    Article  Google Scholar 

  62. Z. Nazila, R. Rasuli, Anchored Cu2O nanoparticles on graphene sheets as an inorganic hole transport layer for improvement in solar cell performance. Appl. Phys. A 124, 814 (2018). https://doi.org/10.1007/s00339-018-2229-6

    Article  CAS  Google Scholar 

  63. H. Wang et al., Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes. Phys. Chem. Chem. Phys. 13, 17359–17366 (2011). https://doi.org/10.1039/c1cp22482d

    Article  CAS  PubMed  Google Scholar 

  64. M. Karimi-Nazarabad, E.K. Goharshadi, H.-S. Sajjadizadeh, Copper-azolate framework coated on g-C3N4 nanosheets as a core-shell heterojunction and decorated with a Ni(OH)2 cocatalyst for efficient photoelectrochemical water splitting. J. Phys. Chem. C 126, 8327–8336 (2022). https://doi.org/10.1021/acs.jpcc.2c01570

    Article  CAS  Google Scholar 

  65. J. Bisquert, F. Fabregat-santiago, Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements. Phys. Chem. 113, 17278–17290 (2009). https://doi.org/10.1021/jp9037649

    Article  CAS  Google Scholar 

  66. M. Karimi-Nazarabad, H. Ahmadzadeh, E.K. Goharshadi, Porous perovskite-lanthanum cobaltite as an efficient cocatalyst in photoelectrocatalytic water oxidation by bismuth doped g-C3N4. Sol. Energy 227, 426–437 (2021). https://doi.org/10.1016/j.solener.2021.09.028

    Article  CAS  Google Scholar 

  67. Y.-Z. Zheng et al., Novel ZnO-based film with double light-scattering layers as photoelectrodes for enhanced efficiency in dye-sensitized solar cells. Chem. Mater. 22, 928–934 (2010). https://doi.org/10.1021/cm901780z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Universiti Teknologi Mara (UiTM) Permatang Pauh, Pulau Pinang and Universiti Sains Malaysia (USM) Pulau Pinang for their research facilities. This research is financially supported by the Ministry of Higher Education of Malaysia (MOHE) through Fundamental Research Grant Scheme (FRGS-2019-1) (ID no 284362-301651).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Abdullah.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.A., Abdullah, M.H., Hassan, M.D.A. et al. Co-active impact of surface hydroxyls on the solvation shell and dye adsorption of Mitragyna Speciosa chlorophyll molecules in dye-sensitised solar cells. J IRAN CHEM SOC 20, 1743–1756 (2023). https://doi.org/10.1007/s13738-023-02795-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02795-w

Keywords

Navigation