Log in

Dandelion-like CoOx nanostructures decorated with CdS nanoparticles toward the photoelectrocatalytic enzymeless glucose oxidation and detection

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Photo-electrochemical sensing is a new strategy for the development of clinical and environmental monitoring. Here, we present a new nanocomposite of cadmium sulfide decorated on cobalt oxide nano-dandelion (CoOx NDs/CdS NPs) aimed at glucose monitoring. Firstly, CoOx NDs are simply synthesized through hydrothermal technique; then, the resulted dandelion structures of CoOx are decorated with CdS nanoparticles through hydrothermal technique. The morphology of CoOx NDs/CdS NPs nanocomposite is characterized by transmission electron microscopy and scanning electron microscopy. The electrochemical properties and sensing ability is investigated by various voltammetric techniques. Beside of electrocatalytic activity, a remarkable photoelectrocatalytic activity toward oxidation of glucose under visible light irradiation is observed. Consequently, the limit of detection of the fabricated sensor toward glucose is 0.23 μM with a sensitivity of 0.46 μA/μM in the dark and 0.09 μM with 1.1 μA/μM under visible light irradiation, respectively. Furthermore, this sensor has displays respectable stability, fast response time, and interference tolerance. This proposed composite can be used in develo** other photo-electrochemical sensors, bio anodes, and related biodevices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Ogurtsova, J.D. da Rocha Fernandes, Y. Huang, U. Linnenkamp, L. Guariguata, N.H. Cho, D. Cavan, J.E. Shaw, L.E. Makaroff, IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 128, 40–50 (2017). https://doi.org/10.1016/j.diabres.2017.03.024

    Article  CAS  PubMed  Google Scholar 

  2. Y. Yamakoshi, M. Ogawa, T. Yamakoshi, M. Satoh, M. Nogawa, S. Tanaka, T. Tamura, P. Rolfe, K. Yamakoshi, A new non-invasive method for measuring blood glucose using instantaneous differential near infrared spectrophotometry, in Annual International Conference of the IEEE Engineering in Medicine and Biology—Proceedings (2007), pp. 2964–2967. https://doi.org/10.1109/IEMBS.2007.4352951

  3. P.N. Wahjudi, M.E. Patterson, S. Lim, J.K. Yee, C.S. Mao, W.N.P. Lee, Measurement of glucose and fructose in clinical samples using gas chromatography/mass spectrometry. Clin. Biochem. 43, 198–207 (2010). https://doi.org/10.1016/j.clinbiochem.2009.08.028

    Article  CAS  PubMed  Google Scholar 

  4. E. Favre, P. Pugeaud, P. Péringer, Automated HPLC monitoring of glucose, glutamine, lactate and alanine on suspended mammalian cell reactors. Biotechnol. Tech. 4, 315–320 (1990). https://doi.org/10.1007/BF00157428

    Article  CAS  Google Scholar 

  5. E. Sharifi, A. Salimi, E. Shams, A. Noorbakhsh, M.K. Amini, Shape-dependent electron transfer kinetics and catalytic activity of NiO nanoparticles immobilized onto DNA modified electrode: fabrication of highly sensitive enzymeless glucose sensor. Biosens. Bioelectron. 56, 313–319 (2014). https://doi.org/10.1016/j.bios.2014.01.010

    Article  CAS  PubMed  Google Scholar 

  6. C.W. Hsu, F.C. Su, P.Y. Peng, H.T. Young, S. Liao, G.J. Wang, Highly sensitive non-enzymatic electrochemical glucose biosensor using a photolithography fabricated micro/nano hybrid structured electrode. Sens. Actuators B Chem. 230, 559–565 (2016). https://doi.org/10.1016/j.snb.2016.02.109

    Article  CAS  Google Scholar 

  7. A. Korani, A. Salimi, Fabrication of High performance bioanode based on fruitful association of dendrimer and carbon nanotube used for design O2/glucose membrane-less biofuel cell with improved bilirubine oxidase biocathode. Biosens. Bioelectron. 50, 186–193 (2013). https://doi.org/10.1016/j.bios.2013.05.047

    Article  CAS  PubMed  Google Scholar 

  8. A. Korani, A. Salimi, H. Hadadzadeh, Nickel-phendione complex covalently attached onto carbon nanotube/cross linked glucose dehydrogenase as bioanode for glucose/oxygen compartment-less biofuel cell. J. Power Sources 282, 586–595 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.009

    Article  CAS  Google Scholar 

  9. J. Yuan, K. Wang, X. **a, Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv. Func. Mater. 15, 803–809 (2005). https://doi.org/10.1002/adfm.200400321

    Article  CAS  Google Scholar 

  10. A. Arabzadeh, A. Salimi, M. Ashrafi, S. Soltanian, P. Servati, Enhanced visible light driven photoelectrocatalytic oxidation of ethanol at reduced graphene oxide/CdS nanowires decorated with Pt nanoparticles. Catal. Sci. Technol. 6, 3485–3496 (2016). https://doi.org/10.1039/c5cy01693b

    Article  CAS  Google Scholar 

  11. Y. Bai, W. Yang, Y. Sun, C. Sun, Enzyme-free glucose sensor based on a three-dimensional gold film electrode. Sens. Actuators B Chem. 134, 471–476 (2008). https://doi.org/10.1016/j.snb.2008.05.028

    Article  CAS  Google Scholar 

  12. J.X. Wang, X.W. Sun, A. Wei, Y. Lei, X.P. Cai, C.M. Li, Z.L. Dong, Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett. 88, 10–13 (2006). https://doi.org/10.1063/1.2210078

    Article  CAS  Google Scholar 

  13. Y. Mu, D. Jia, Y. He, Y. Miao, H.L. Wu, Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens. Bioelectron. 26, 2948–2952 (2011). https://doi.org/10.1016/j.bios.2010.11.042

    Article  CAS  PubMed  Google Scholar 

  14. J. Luo, S. Jiang, H. Zhang, J. Jiang, X. Liu, A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal. Chim. Acta 709, 47–53 (2012). https://doi.org/10.1016/j.aca.2011.10.025

    Article  CAS  PubMed  Google Scholar 

  15. A. Navaee, M. Narimani, A. Korani, R. Ahmadi, A. Salimi, S. Soltanian, Bimetallic Fe15Pt85 nanoparticles as an effective anodic electrocatalyst for non-enzymatic glucose/oxygen biofuel cell. Electrochim. Acta 208, 325–333 (2016). https://doi.org/10.1016/j.electacta.2016.05.033

    Article  CAS  Google Scholar 

  16. H. Okabe, J. Akimitsu, T. Kubodera, M. Matoba, T. Kyomen, M. Itoh, Low-temperature magnetoresistance of layered cobalt oxides NaxCoO2. Phys B 378–380, 863–864 (2006). https://doi.org/10.1016/j.physb.2006.01.319

    Article  CAS  Google Scholar 

  17. H.J. Qiu, L. Liu, Y.P. Mu, H.J. Zhang, Y. Wang, Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices. Nano Res. 8, 321–339 (2015). https://doi.org/10.1007/s12274-014-0589-6

    Article  CAS  Google Scholar 

  18. X.H. **a, J.P. Tu, J. Zhang, X.H. Huang, X.L. Wang, W.K. Zhang, H. Huang, Enhanced electrochromics of nanoporous cobalt oxide thin film prepared by a facile chemical bath deposition. Electrochem. Commun. 10, 1815–1818 (2008). https://doi.org/10.1016/j.elecom.2008.09.025

    Article  CAS  Google Scholar 

  19. A. Salimi, R. Hallaj, S. Soltanian, H. Mamkhezri, Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles. Anal. Chim. Acta 594, 24–31 (2007). https://doi.org/10.1016/j.aca.2007.05.010

    Article  CAS  PubMed  Google Scholar 

  20. M. Ashrafi, A. Salimi, A. Arabzadeh, Photoelectrocatalytic enzymeless detection of glucose at reduced graphene oxide/CdS nanocomposite decorated with finny ball CoOx nanostructures. J. Electroanal. Chem. 783, 233–241 (2016). https://doi.org/10.1016/j.jelechem.2016.11.015

    Article  CAS  Google Scholar 

  21. M. Manickam, V. Ponnuswamy, C. Sankar, R. Mariappan, R. Suresh, Influence of substrate temperature on the properties of cobalt oxide thin films prepared by nebulizer spray pyrolysis (NSP) technique. Silicon 8, 351–360 (2016). https://doi.org/10.1007/s12633-015-9316-5

    Article  CAS  Google Scholar 

  22. L. Kang, D. He, L. Bie, P. Jiang, Nanoporous cobalt oxide nanowires for non-enzymatic electrochemical glucose detection. Sens. Actuators B Chem. 220, 888–894 (2015). https://doi.org/10.1016/j.snb.2015.06.015

    Article  CAS  Google Scholar 

  23. D. Bimberg, Quantum dot based nanophotonics and nanoelectronics. Electron. Lett. 44, 390 (2008). https://doi.org/10.1049/el:20080395

    Article  Google Scholar 

  24. J.K. Jaiswal, S.M. Simon, Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol. 14, 497–504 (2004). https://doi.org/10.1016/j.tcb.2004.07.012

    Article  CAS  PubMed  Google Scholar 

  25. N. Qutub, S. Sabir, Optical, thermal and structural properties of CdS quantum dots synthesized by a simple chemical route. Int. J. Nanosci. Nanotechnol. 8, 111–120 (2012)

    Google Scholar 

  26. J.J. Zhang, T.F. Kang, Y.C. Hao, L.P. Lu, S.Y. Cheng, Electrochemiluminescent immunosensor based on CdS quantum dots for ultrasensitive detection of microcystin-LR. Sens. Actuators B Chem. 214, 117–123 (2015). https://doi.org/10.1016/j.snb.2015.03.019

    Article  CAS  Google Scholar 

  27. R. Agarwal, C.J. Barrelet, C.M. Lieber, Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett. 5, 917–920 (2005). https://doi.org/10.1021/nl050440u

    Article  CAS  PubMed  Google Scholar 

  28. M. Antoniadou, D.I. Kondarides, D.D. Dionysiou, P. Lianos, Quantum dot sensitized titania applicable as photoanode in photoactivated fuel cells. J. Phys. Chem. C 116, 16901–16909 (2012). https://doi.org/10.1021/jp305098m

    Article  CAS  Google Scholar 

  29. R. Grinyte, J. Barroso, L. Saa, V. Pavlov, Modulating the growth of cysteine-capped cadmium sulfide quantum dots with enzymatically produced hydrogen peroxide. Nano Res. 10, 1932–1941 (2017). https://doi.org/10.1007/s12274-016-1378-1

    Article  CAS  Google Scholar 

  30. J.A. Ho, Y.C. Lin, L.S. Wang, K.C. Hwang, P.T. Chou, Carbon nanoparticle enhanced immunoelectrochemical detection for protein tumor marker with CdS biotracer. Anal. Chem. 81, 1340–1346 (2009)

    Article  CAS  PubMed  Google Scholar 

  31. C.J. Lin, L.C. Kao, Y. Huang, M.A. Bañares, S.Y.H. Liou, Uniform deposition of coupled CdS and CdSe quantum dots on ZnO nanorod arrays as electrodes for photoelectrochemical solar water splitting. Int. J. Hydrog. Energy 40, 1388–1393 (2015). https://doi.org/10.1016/j.ijhydene.2014.11.070

    Article  CAS  Google Scholar 

  32. I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005). https://doi.org/10.1038/nmat1390

    Article  CAS  PubMed  Google Scholar 

  33. M. Molaei, M. Marandi, E. Saievar-Iranizad, N. Taghavinia, B. Liu, H.D. Sun, X.W. Sun, Near-white emitting QD-LED based on hydrophilic CdS nanocrystals. J. Lumin. 132, 467–473 (2012). https://doi.org/10.1016/j.jlumin.2011.08.038

    Article  CAS  Google Scholar 

  34. W. Shangguan, Photocatalytic hydrogen evolution from water on nanocomposites incorporating cadmium sulfide into the interlayer. J. Phys. Chem. B 9, 12227–12230 (2002)

    Article  Google Scholar 

  35. Y. Huang, F. Sun, H. Wang, Y. He, L. Li, Z. Huang, Q. Wu, J.C. Yu, Photochemical growth of cadmium-rich CdS nanotubes at the air–water interface and their use in photocatalysis. J. Mater. Chem. 19, 6901 (2009). https://doi.org/10.1039/b907871a

    Article  CAS  Google Scholar 

  36. S. Liu, N. Zhang, Z.R. Tang, Y.J. Xu, Synthesis of one-dimensional CdS@TiO2 core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO2 shell. ACS Appl. Mater. Interfaces 4, 6378–6385 (2012). https://doi.org/10.1021/am302074p

    Article  CAS  PubMed  Google Scholar 

  37. A. Arabzadeh, A. Salimi, One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation. J. Colloid Interface Sci. 479, 43–54 (2016). https://doi.org/10.1016/j.jcis.2016.06.036

    Article  CAS  PubMed  Google Scholar 

  38. F. Jafari, A. Salimi, A. Navaee, Electrochemical and photoelectrochemical sensing of dihydronicotinamide adenine dinucleotide and glucose based on noncovalently functionalized reduced graphene oxide-cadmium sulfide quantum dots/poly-nile blue nanocomposite. Electroanalysis 26, 1782–1793 (2014). https://doi.org/10.1002/elan.201400164

    Article  CAS  Google Scholar 

  39. T. Maiyalagan, K.A. Jarvis, S. Therese, P.J. Ferreira, A. Manthiram, Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 5, 3949 (2014). https://doi.org/10.1038/ncomms4949

    Article  CAS  PubMed  Google Scholar 

  40. A. Khan, CdS nanoparticles with a thermoresponsive polymer: synthesis and properties. J. Nanomater. (2012). https://doi.org/10.1155/2012/451506

    Article  Google Scholar 

  41. A. Salimi, H. Mamkhezri, R. Hallaj, S. Soltanian, Electrochemical detection of trace amount of arsenic(III) at glassy carbon electrode modified with cobalt oxide nanoparticles. Sens. Actuators B Chem. 129, 246–254 (2008). https://doi.org/10.1016/j.snb.2007.08.017

    Article  CAS  Google Scholar 

  42. N. Zhang, S. Liu, X. Fu, Y.J. Xu, A simple strategy for fabrication of “plum-pudding” type Pd@CeO2 semiconductor nanocomposite as a visible-light-driven photocatalyst for selective oxidation. J. Phys. Chem. C 115, 22901–22909 (2011). https://doi.org/10.1021/jp205821b

    Article  CAS  Google Scholar 

  43. X. Dong, H. Xu, X. Wang, Y. Huang, M.B. Chan-park, H. Zhang, 3D Graphene À cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano (2012). https://doi.org/10.1021/nn300097q

    Article  PubMed  PubMed Central  Google Scholar 

  44. Y. Ding, Y. Wang, L. Su, M. Bellagamba, H. Zhang, Y. Lei, Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens. Bioelectron. 26, 542–548 (2010). https://doi.org/10.1016/j.bios.2010.07.050

    Article  CAS  PubMed  Google Scholar 

  45. R.A. Soomro, A. Nafady, Z.H. Ibupoto, S.S.T.H. Sirajuddin, M. Willander, M.I. Abro, Non-enzymatic glucose sensor using complex nanostructures of cobalt oxide. Mater. Sci. Semicond. Process. 34, 373–381 (2015). https://doi.org/10.1016/j.mssp.2015.02.055

    Article  CAS  Google Scholar 

  46. C. Hou, Q. Xu, L. Yin, X. Hu, Metal-organic framework templated synthesis of Co3O4 nanoparticles for direct glucose and H2O2 detection. Analyst 137, 5803–5808 (2012). https://doi.org/10.1039/c2an35954e

    Article  CAS  PubMed  Google Scholar 

  47. C. Guo, X. Zhang, H. Huo, C. Xu, X. Han, Co3O4 microspheres with free-standing nanofibers for high performance non-enzymatic glucose sensor. Analyst 138, 6727–6731 (2013). https://doi.org/10.1039/c3an01403g

    Article  CAS  PubMed  Google Scholar 

  48. C.W. Kung, C.Y. Lin, Y.H. Lai, R. Vittal, K.C. Ho, Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose. Biosens. Bioelectron. 27, 125–131 (2011). https://doi.org/10.1016/j.bios.2011.06.033

    Article  CAS  PubMed  Google Scholar 

  49. Y. Su, B. Luo, J.Z. Zhang, Controllable cobalt oxide/Au hierarchically nanostructured electrode for nonenzymatic glucose sensing. Anal. Chem. 88, 1617–1624 (2016). https://doi.org/10.1021/acs.analchem.5b03396

    Article  CAS  PubMed  Google Scholar 

  50. H. Zhang, S. Liu, A combined self-assembly and calcination method for preparation of nanoparticles-assembled cobalt oxide nanosheets using graphene oxide as template and their application for non-enzymatic glucose biosensing. J. Colloid Interface Sci. 485, 159–166 (2017). https://doi.org/10.1016/j.jcis.2016.09.041

    Article  CAS  PubMed  Google Scholar 

  51. G. Ma, M. Yang, C. Li, H. Tan, L. Deng, S. **e, F. Xu, L. Wang, Y. Song, Preparation of spinel nickel-cobalt oxide nanowrinkles/reduced graphene oxide hybrid for nonenzymatic glucose detection at physiological level. Electrochim. Acta 220, 545–553 (2016). https://doi.org/10.1016/j.electacta.2016.10.163

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports of the Iranian Nanotechnology inventive and Research Office of the University of Kurdistan (Grant Number 4.160231) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Salimi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashrafi, M., Salimi, A. Dandelion-like CoOx nanostructures decorated with CdS nanoparticles toward the photoelectrocatalytic enzymeless glucose oxidation and detection. J IRAN CHEM SOC 20, 1061–1072 (2023). https://doi.org/10.1007/s13738-022-02728-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02728-z

Keywords

Navigation