Log in

A simple methodology for obtaining novel heterojunction photocatalyst NiO/δ-FeOOH: a theoretical and experimental study

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A new type of photocatalyst was obtained by heterojunction between δ-FeOOH and NiO using a ball mill. The proportion of NiO in relation to δ-FeOOH was varied, resulting in the materials FN5, FN10 and FN20 (5, 10 and 20% w/w, NiO:δ-FeOOH). The diffractograms confirmed the heterojunction by the presence of crystalline planes of NiO. In addition, the heterojunction formed also reflected in the increase in the band gap of the material and, consequently, in the performance of photocatalysis, especially for FN20, which reached about 72% of dye removal in 4 h. Theoretical studies were carried out to elucidate the mechanisms of photocatalysis by optimization and single-point calculations of NiO and δ-FeOOH structures. The results indicated that, when the light is on, the holes pass from the valence band of NiO to the valence band of δ-FeOOH, whose photoexcited electrons go from its conduction band to the conduction band of NiO. This effect results in decreasing electron/hole recombination rates, improving the photocataylic process when compared to the δ-FeOOH photocatalyst alone. In addition, it was observed that the water oxidation occurs on δ-FeOOH surface, and that this reaction can be thermodynamically favorable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.G. Leonel, A.A.P. Mansur, H.S. Mansur, Water Res. 190, 116693 (2021)

    Article  CAS  Google Scholar 

  2. Z. Long, Q. Li, T. Wei, G. Zhang, Z. Ren, J. Hazard. Mater. 395, 122599 (2020)

    Article  CAS  Google Scholar 

  3. D.S. Babu, V. Srivastava, P.V. Nidheesh, M.S. Kumar, Sci. Total Environ. 696, 133961 (2019)

    Article  CAS  Google Scholar 

  4. P. Singh, K. Sharma, V. Hasija, V. Sharma, S. Sharma, P. Raizada, M. Singh, A.K. Saini, A. Hosseini-Bandegharaei, V.K. Thakur, Mater. Today Chem. 14, 100186 (2019)

    Article  CAS  Google Scholar 

  5. D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner, Water Res. 139, 118 (2018)

    Article  CAS  Google Scholar 

  6. P. Basnet, D. Samanta, T.I. Chanu, S. Chatterjee, J. Alloys Compd. 867, 158870 (2021)

    Article  CAS  Google Scholar 

  7. B. Srikanth, R. Goutham, R. Badri Narayan, A. Ramprasath, K.P. Gopinath, A.R. Sankaranarayanan, J. Environ. Manage. 200, 60 (2017)

  8. G. Varshney, S.R. Kanel, D.M. Kempisty, V. Varshney, A. Agrawal, E. Sahle-Demessie, R.S. Varma, M.N. Nadagouda, Coord. Chem. Rev. 306, 43 (2016)

    Article  CAS  Google Scholar 

  9. C.B. Ong, L.Y. Ng, A.W. Mohammad, Renew. Sustain. Energy Rev. 81, 536 (2018)

    Article  CAS  Google Scholar 

  10. J. Guan, Z. Long, Q. Li, J. Han, H. Du, P. Wang, G. Zhang, Opt. Mater. (Amst). 121, 111604 (2021)

    Article  CAS  Google Scholar 

  11. P.M. Mishra, G.K. Naik, A. Nayak, K.M. Parida, Chem. Eng. J. 299, 227 (2016)

    Article  CAS  Google Scholar 

  12. S. Boumaza, H. Kabir, I. Gharbi, A. Belhadi, M. Trari, Int. J. Hydrog. Energy 43, 3424 (2018)

    Article  CAS  Google Scholar 

  13. Y. Guo, C. Li, Z. Gong, Y. Guo, X. Wang, B. Gao, W. Qin, G. Wang, J. Hazard. Mater. 397, 122580 (2020)

    Article  CAS  Google Scholar 

  14. M.C. Pereira, E.M. Garcia, A. Cândido da Silva, E. Lorençon, J.D. Ardisson, E. Murad, J.D. Fabris, T. Matencio, T. de Castro Ramalho, M.V.J. Rocha, J. Mater. Chem. 21, 10280 (2011)

  15. A.C. da Silva, M.R. Almeida, M. Rodriguez, A.R.T. Machado, L.C.A. de Oliveira, M.C. Pereira, J. Photochem. Photobiol. A Chem. 332, 54 (2017)

    Article  Google Scholar 

  16. M.R. Samarghandi, J.K. Yang, O. Giahi, M. Shirzad-Siboni, Environ. Technol. (United Kingdom) 36, 1132 (2015)

    CAS  Google Scholar 

  17. H. Dou, L. Chen, S. Zheng, Y. Zhang, G.Q. Xu, Mater. Chem. Phys. 214, 482 (2018)

    Article  CAS  Google Scholar 

  18. M. Karimi-Nazarabad, H. Ahmadzadeh, E.K. Goharshadi, Sol. Energy 227, 426 (2021)

    Article  CAS  Google Scholar 

  19. S.G. de Moura, T.C. Ramalho, L.C.A. de Oliveira, L.C.L. Dauzakier, F. Magalhães, J. Iran. Chem. Soc. 19, 921 (2022)

    Article  Google Scholar 

  20. M. Karimi-Nazarabad, E.K. Goharshadi, H.S. Sajjadizadeh, J. Phys. Chem. C (2022)

  21. F. Soltani-nezhad, A. Saljooqi, A. Mostafavi, T. Shamspur, Ecotoxicol. Environ. Saf. 189, 109886 (2020)

    Article  CAS  Google Scholar 

  22. M.C. Oliveira, V.S. Fonseca, N.F. Andrade Neto, R.A.P. Ribeiro, E. Longo, S.R. de Lazaro, F.V. Motta, M.R.D. Bomio, Ceram Int. 46, 9446 (2020)

    Article  CAS  Google Scholar 

  23. Z.-M. Yang, S.-C. Hou, G.-F. Huang, H.-G. Duan, W.-Q. Huang, Mater. Lett. 133, 109 (2014)

    Article  CAS  Google Scholar 

  24. M. Dorraj, M. Alizadeh, N.A. Sairi, W.J. Basirun, B.T. Goh, P.M. Woi, Y. Alias, Appl. Surf. Sci. 414, 251 (2017)

    Article  CAS  Google Scholar 

  25. M. Alshehri, F. Al-Marzouki, A. Alshehrie, M. Hafez, J. Alloys Compd. 757, 161 (2018)

    Article  CAS  Google Scholar 

  26. Y.G. Kim, W.K. Jo, Int. J. Hydrogen Energy 42, 11356 (2017)

    Article  CAS  Google Scholar 

  27. W. Wu, C. Jiang, V.A.L. Roy, Nanoscale 7, 38 (2015)

    Article  CAS  Google Scholar 

  28. Z. Zheng, X. Zu, Y. Zhang, W. Zhou, Mater. Today Phys. 15, 100262 (2020)

    Article  Google Scholar 

  29. Y. Zhang, Q. Wang, D. Liu, Q. Wang, T. Li, Z. Wang, Appl. Surf. Sci. 521, 146434 (2020)

    Article  CAS  Google Scholar 

  30. L. Zhang, Appl. Surf. Sci. 430, 2 (2018)

    Article  CAS  Google Scholar 

  31. E.D. Sherly, J. Judith Vijaya, L. John Kennedy, B. Sreedhar, J. Nanosci. Nanotechnol. 16, 9784 (2016)

  32. P. Zhai, Q. Yi, J. Jian, H. Wang, P. Song, C. Dong, X. Lu, Y. Sun, J. Zhao, X. Dai, Y. Lou, H. Yang, G. Zou, Chem. Commun. 50, 1854 (2014)

    Article  CAS  Google Scholar 

  33. P. Chagas, A.C. Da Silva, E.C. Passamani, J.D. Ardisson, L.C.A. De Oliveira, J.D. Fabris, R.M. Paniago, D.S. Monteiro, M.C. Pereira, J. Nanoparticle Res. 15, (2013).

  34. K. Maaz, S. Karim, A. Mumtaz, S.K. Hasanain, J. Liu, J.L. Duan, J. Magn. Magn. Mater. 321, 1838 (2009)

    Article  CAS  Google Scholar 

  35. D.L. Wood, J. Tauc, Phys. Rev. B 5, 3144 (1972)

    Article  Google Scholar 

  36. Y. Wang, G. Tan, T. Liu, Y. Su, H. Ren, X. Zhang, A. **a, L. Lv, Y. Liu, Appl. Catal. B Environ. 234, 37 (2018)

    Article  CAS  Google Scholar 

  37. A.M.S. Mimura, T.V. de A. Vieira, P.B. Martelli, H. de F. Gorgulho, Quim. Nova 33, 1279 (2010)

  38. R.K. Sharma, D. Kumar, R. Ghose, Ceram. Int. 42, 4090 (2016)

    Article  CAS  Google Scholar 

  39. N. Nishida, S. Amagasa, Y. Kobayashi, Y. Yamada, Appl. Surf. Sci. 387, 996 (2016)

    Article  CAS  Google Scholar 

  40. S. Corrêa, I.A. Rosa, G.A. Andolpho, L.C. de Assis, M.D.S. Pires, L.C.T. Lacerda, F.G.E. Nogueira, E.F.F. da Cunha, E. Nepovimova, K. Kuca, T.C. Ramalho, Int. J. Mol. Sci. 22, 3980 (2021)

    Article  Google Scholar 

  41. S.V. Sancheti, C. Saini, R. Ambati, P.R. Gogate, Catal. Today 300, 50 (2018)

    Article  CAS  Google Scholar 

  42. J. Bao, S. Guo, J. Gao, T. Hu, L. Yang, C. Liu, J. Peng, C. Jiang, RSC Adv. 5, 97195 (2015)

    Article  CAS  Google Scholar 

  43. K.A. Cychosz, R. Guillet-Nicolas, J. García-Martínez, M. Thommes, Chem. Soc. Rev. 46, 389 (2017)

    Article  CAS  Google Scholar 

  44. T.D.S. Rocha, E.S. Nascimento, A.C. Da Silva, H.D.S. Oliveira, E.M. Garcia, L.C.A. De Oliveira, D.S. Monteiro, M. Rodriguez, M.C. Pereira, RSC Adv. 3, 20308 (2013)

    Article  CAS  Google Scholar 

  45. M. Fang, M. Zhu, K. Zhang, X. Tan, H. Zhu, X. Wang, Mater. Lett. 231, 76 (2018)

    Article  CAS  Google Scholar 

  46. B. Gao, L. Liu, J. Liu, F. Yang, Appl. Catal. B Environ. 147, 929 (2014)

    Article  CAS  Google Scholar 

  47. N.M. Hosny, Polyhedron 30, 470 (2011)

    Article  CAS  Google Scholar 

  48. P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. **e, Z.F. Liu, Sci. Total Environ. 424, 1 (2012)

    Article  CAS  Google Scholar 

  49. S. Wu, J. Lu, Z. Ding, N. Li, F. Fu, B. Tang, RSC Adv. 6, 82118 (2016)

    Article  CAS  Google Scholar 

  50. J. Ahmad, K. Majid, M.A. Dar, Appl. Surf. Sci. 457, 417 (2018)

    Article  CAS  Google Scholar 

  51. T. Tangcharoen, W. Klysubun, C. Kongmark, J. Mol. Struct. 1156, 524 (2018)

    Article  CAS  Google Scholar 

  52. A.A. Jelle, M. Hmadeh, P.G. OBrien, D.D. Perovic, G.A. Ozin, Chem. Nanomater. ENERGY, Biol. MORE 13, 287 (1996)

  53. S. Singh, I. Ahmed, K.K. Haldar, J. Colloid Interface Sci. 523, 1 (2018)

    Article  CAS  Google Scholar 

  54. T.A. Aragaw, Surfaces and Interfaces 18, 100439 (2020)

    Article  CAS  Google Scholar 

  55. S.A. Bhat, F. Zafar, A.H. Mondal, A. Kareem, A.U. Mirza, S. Khan, A. Mohammad, Q.M.R. Haq, N. Nishat, J. Iran. Chem. Soc. 17, 215 (2020)

    Article  CAS  Google Scholar 

  56. H. Naderpour, M. Noroozifar, M. Khorasani-Motlagh, J. Iran. Chem. Soc. 10, 471 (2013)

    Article  CAS  Google Scholar 

  57. S.H. Sajjadi, E.K. Goharshadi, J. Environ. Chem. Eng. 5, 1096 (2017)

    Article  CAS  Google Scholar 

  58. S.M. Sajjadi, Z. Asadollah-pour, S.H. Sajjadi, S.N. Nabavi, Chem. Pap. 76, 427 (2022)

    Article  CAS  Google Scholar 

  59. L. Zhou, X. Zhang, and L. Lei, J. Environ. Chem. Eng. 9, (2021)

  60. J. Li, Y. Ding, K. Chen, Z. Li, H. Yang, S. Yue, Y. Tang, Q. Wang, J. Alloys Compd. 903, 163795 (2022)

    Article  CAS  Google Scholar 

  61. X. Li, Y. Peng, T. Tian, D. Wang, X. Ren, X. Pu, J. Solid State Chem. 306, 122715 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Federal University of Lavras, where this research was developed, the partner university that was extremely important in the characterization analyses, the Federal University of São Carlos, and the funding agencies that supported this study with the grants offered for institutional programs, the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Council for Scientific and Technological Development (CNPq) and the Foundation for Supporting Research of the State of Minas Gerais (FAPEMIG). Thank also the Programa de Pós-Graduação da Rede Mineira de Química, PPGMQ-MG.

Funding

This study was funded by the Federal University of Lavras, where this research was developed, the partner university that was extremely important in the characterization analyses, the Federal University of São Carlos and the development companies that supported this study with the funds offered for institutional programs, the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Council for Scientific and Technological Development (CNPq) and the Foundation for Supporting Research of the State of Minas Gerais (FAPEMIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana de Rezende Bonesio.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonesio, M., Nogueira, F.G.E., Mancini, D.T. et al. A simple methodology for obtaining novel heterojunction photocatalyst NiO/δ-FeOOH: a theoretical and experimental study. J IRAN CHEM SOC 20, 415–426 (2023). https://doi.org/10.1007/s13738-022-02676-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02676-8

Keywords

Navigation