Log in

A quantitative nuclear magnetic resonance spectroscopic method development and validation to determine an absolute amount of levofloxacin hemihydrate in tablet dosage form

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Nuclear magnetic resonance spectroscopy is a non-invasive and non-destructive analytical tool to study the structure of organic molecules; by definition itself, nuclear magnetic resonance is a quantitative technique as the peak area is proportional to the number of nuclei. So far, limited literature has been available on qNMR application in pharmaceutical analysis. A simple, precise, universal, accurate, and specific quantitative proton nuclear magnetic resonance (qNMR) spectroscopic methodology was proposed to determine the content of levofloxacin hemihydrate in the pharmaceutical tablet dosage form. In this qNMR methodology, maleic acid was utilized as internal standard (IS) and deuterated dimethyl sulfoxide-DMSO-d6 as diluent. The resonating peak at 8.94 ppm corresponds to analyte—levofloxacin hemihydrate; moreover, the ridge at 6.20 ppm corresponds to an internal standard (IS)—maleic acid. Limit of detection (LOD) and limit of quantitation (LOQ) for levofloxacin hemihydrate were obtained as 0.052 mg/0.6 mL and 0.16 mg/0.6 mL, respectively. The correlation coefficient (R2) obtained was 1.0000. The optimized experiment was validated employing specificity, limit of detection (LOD), limit of quantitation (LOQ), precision, linearity, accuracy, solution stability, and robustness consistent with International Conference on Harmonization (ICH) guidelines. The validation results conclude that the qNMR method is intended to determine the content of levofloxacin hemihydrate in the pharmaceutical tablet dosage form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.F. Simonetti, D. Viasus, C. Garcia-Vidal et al., Management of community-acquired pneumonia in older adults. Ther. Adv Infect Dis. 2, 3–16 (2014)

    PubMed  PubMed Central  Google Scholar 

  2. N.Torner, C. Izquierdo, N. Soldevila, et al. Project PI12/02079 Working Group. Factors associated with 30-day mortality in elderly inpatients with community-acquired pneumonia during 2 influenza seasons. Hum Vaccine Immunotherapy. 13, 450–455 (2017)

  3. Y. Aimi, W.S. Lim, L. Lansbury et al., Systematic review of respiratory viral pathogens identified in adults with community-acquired pneumonia in Europe. J. Clin. Virol. 95, 26–35 (2017)

    Article  Google Scholar 

  4. S.M. Spoorenberg, W.J. Bos, E.J, Hannen, et al. Chlamydia psittaci: a relevant cause of community-acquired pneumonia in two Dutch hospitals, Neth J Med. 74, 75–81 (2016)

  5. E.J. Edelman, K.S. Gordon, K. Crother et al., Association of prescribed opioids with increased risk of community-acquired pneumonia among patients with and without HV. JAMA Intern. Med. 179, 297–304 (2019)

    Article  Google Scholar 

  6. L. Kao et al., Pharmacokinetic considerations and efficacy of levofloxacin in an inhalational anthrax (postexposure) rhesus monkey model. Antimicrob. Agents Chemother. 50, 3535–3542 (2006)

    Article  CAS  Google Scholar 

  7. I. Karampela, M. Dalamaga, Could respiratory fluoroquinolones, levofloxacin and moxifloxacin, prove to be beneficial as an adjunct treatment in COVID-19? Arch. Med. Res. 51(7), 741–742 (2020)

    Article  CAS  Google Scholar 

  8. S. Ghimire, B. Maharjan, E.M. Jongedijk, J.G.W. Kosterink, G.R. Ghimire, D.J. Touw, T.S. van der Werf, B. Shrestha, J. C. Alffenaar, Levofloxacin pharmacokinetics, pharmacodynamics and outcome in multidrug-resistant tuberculosis patients. Eur Respir J. 53(4), 1802107 (2019)

  9. M. Madsen, K. Messenger, M.G. Papich, Pharmacokinetics of levofloxacin following oral administration of a generic levofloxacin tablet and intravenous administration to dogs. Am. J. Vet. Res. 80(10), 957–962 (2019)

    Article  CAS  Google Scholar 

  10. A. Sitovs, I. Sartini, M. Giorgi, Levofloxacin in veterinary medicine: a literature review. Res. Vet. Sci. 137, 111–126 (2021)

    Article  CAS  Google Scholar 

  11. S. Shah, R. Ghetiya, M. Soniwala, J. Chavda, Development and optimization of inhalable levofloxacin nanoparticles for the treatment of tuberculosis. Curr. Drug. Deliv. 18(6), 779–793 (2021)

    Article  CAS  Google Scholar 

  12. “FDA drug safety communication: FDA advises restricting fluoroquinolone antibiotic use for certain un complicated infections; warns about disabling adverse effects that can occur”. US Department of Health and Human services.US Food and Drug Administration 2016.

  13. G.K. Webster, I.Marsden, C.A. Pommerening, C.M Tyrakowski, Validation of pharmaceutical potency determination by quantitative nuclear magnetic resonance spectrometry, Appl. Spectrosc. 64, 537–542 (2010)

  14. T. Beyer, B. Diiehl, U. Holzgrabe, Quantitative NMR spectroscopy of biologically active substances and excipients. Bioanal. Rev. 2, 1–22 (2010)

    Article  Google Scholar 

  15. G. F. Pauli, D. C. Lankin, B. U. Jaki, Nuclear magnetic resonance method for quantitative and qualitative measurement of natural products. WO2008051857. A2 (2008)

  16. F. Kasler, Quantitative analysis by NMR spectroscopy (Academic Press, New York, 1973)

    Google Scholar 

  17. U. Holzgrabe, B. Diehl B and I .Wawer, NMR Spectroscopy in Pharmaceutical Analysis. (Elsevier Ltd., Oxford, UK) pp. 49–50 (2008)

  18. F. Malz, H. Jancke, Validation of quantitative NMR. J. Phram. Biomed. Anal. 38, 813–823 (2005)

    Article  CAS  Google Scholar 

  19. B. Tanja, S. Curd, The role of solvents in the signal separation for quantitative 1H-NMR spectroscopy. J. Phram. Biomed. Anal. 52, 51–58 (2010)

    Article  Google Scholar 

  20. S. Sun, M. **, X. Zhou, J. Ni, X. **, H. Liu, Y. Wang, The application of quantitative 1H-NMR for the determination of orlistat in tablets. Molecules 22(9), 1517 (2017)

    Article  Google Scholar 

  21. N. Duangdee, N. Chamboonchu, S. Kongkiatpaiboon, S. Prateeptongkum, Quantitative 1 HNMR spectroscopy for the determination of oxyresveratrol in Artocarpus lacucha heartwood. Phytochem. Anal. 30(6), 617–622 (2019)

    Article  CAS  Google Scholar 

  22. X. Sun, W. Zhang, T. Huang, Y. He, H. Li, P. Su, Y. Yang, Purity determination of pyributicarb by internal standard correction-high-performance liquid chromatography-quantitative nuclear magnetic resonance. Anal. Bioanal. Chem. 412(25), 6983–6993 (2020)

    Article  CAS  Google Scholar 

  23. G. Dİkmen, O. Uslu, The application of qNMR for the determination of rosuvastatin in tablet form. Turk. J. Chem., 45(1), 132–142 (2021)

  24. Y.Y. Zhang, J. Zhang, W.X. Zhang, Y. Wang, Y.H. Wang, Q.Y. Yang, S. Wu, Quantitative 1H nuclear magnetic resonance method for assessing the purity of dipotassium glycyrrhizinate. Molecules 26(12), 3549 (2021)

    Article  CAS  Google Scholar 

  25. R.C.A. Silva, E.G.R. de Sousa, J.L. Mazzei, E.M. de Carvalho, Quantitative 1H NMR method for analyzing primaquine diphosphate14 in active pharmaceutical ingredients. J. Pharm. Biomed. Anal. 210, 114585 (2022)

    Article  CAS  Google Scholar 

  26. L. Sarah, Draper, Evan R. McCarney, Benchtop nuclear magnetic resonance spectroscopy in forensic chemistry, Magnetic Resonance in Chemistry, 5197, (2021)

  27. B.U. Jaki, A. Bzhelyansky, G.F. Pauli, Quantitative NMR (qNMR) for pharmaceutical analysis: the pioneering work of George Hanna at the US FDA. Magn. Reson. Chem. 59(1), 7–15 (2020)

    Article  Google Scholar 

  28. A. Czyrski, E. Szałek, An HPLC method for levofloxacin determination and its application in biomedical analysis. J. Anal. Chem. 71(8), 840–843 (2016)

    Article  CAS  Google Scholar 

  29. S. Yıldırım, H.N. Karakoç, A. Yaşar, İ Köksal, Determination of levofloxacin, ciprofloxacin, moxifloxacin and gemifloxacin in urine and plasma by HPLC-FLD-DAD using pentafluorophenyl core-shell column: Application to drug monitoring. Biomed. Chromatogr. 34(10), e4925 (2020)

    Article  Google Scholar 

  30. I. Maharini, R. Martien, A.K. Nugroho, RP-HPLC-UV validation method for levofloxacin hemihydrate estimation in the nano polymeric ocular preparation. Arab. J. Chem. 2, 103582 (2022)

    Article  Google Scholar 

  31. S.E. Toker, G.E. Kızılçay, O. Sagirli, Determination of levofloxacin by HPLC with fluorescence detection in human breast milk. Bioanalysis 13(13), 1063–1070 (2021)

    Article  CAS  Google Scholar 

  32. O. Szerkus, J. Jacyna, A. Gibas, M. Sieczkowski, D. Siluk, M. Matuszewski, R. Kaliszan, M.J. Markuszewski, Robust HPLC-MS/MS method for levofloxacin and ciprofloxacin determination in human prostate tissue. J. Pharm Biomed. Anal. 132, 173–183 (2017)

    Article  CAS  Google Scholar 

  33. T. D.Nguyen, H. B. Le, T. O. Dong, & T. D. Pham, Determination of fluoroquinolones in pharmaceutical formulations by extractive spectrophotometric methods using ion-pair complex formation with bromothymol blue. J. Anal. Methods Chem., 1–11 (2018)

  34. V.N. Desai, O.E. Afieroho, B.O. Dagunduro: A simple UV spectrophotometric method for the determination of Levofloxacin hemihydrate in dosage formulations. Trop. J. Pharm, Res. 10, 75–79 (2011)

  35. ICH Harmonized Tripartite Guidelines. Validation of analytical Procedures: Text and Methodology Q2(R1) (2005)

Download references

Acknowledgements

Author Srinivas Nakka acknowledges M/S Synpure laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra Babu Manabolu Surya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest for this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakka, S., Katari, N.K. & Manabolu Surya, S.B. A quantitative nuclear magnetic resonance spectroscopic method development and validation to determine an absolute amount of levofloxacin hemihydrate in tablet dosage form. J IRAN CHEM SOC 19, 3875–3885 (2022). https://doi.org/10.1007/s13738-022-02573-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02573-0

Keywords

Navigation