Log in

Development of a deep eutectic solvent-based dispersive liquid–liquid microextraction method followed by back-extraction and diazotization coupled to spectrophotometry for determination of total primary aromatic amines from food simulants

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this research, a deep eutectic solvent-based vortex assisted-dispersive liquid–liquid microextraction method followed by back-extraction and diazotization coupled with microvolume spectrophotometry was developed. The method was applied to determine total primary aromatic amines (PAAs) in terms of aniline in polyamide cooking utensils and colored kitchenware samples. The novel hydrophobic deep eutectic solvent was prepared by mixing bis (2-ethylhexyl) phosphate as hydrogen bond acceptor and butylparaben as hydrogen bond donor. Affecting factors on microextraction and back-extraction of the PAAs were investigated and optimized. Under optimal conditions, the calibration curve was linear ranged from5.0 to 500 µg L−1with a correlation coefficient of R2 ≥ 0.9979. The limit of detection was 1.5 µg L−1 based on S/N = 3. The intra-day (n = 6) and inter-day (n = 3) precisions at concentration levels of 20.0 and 200 µg L−1 were ≤ 8.5%. Finally, the efficiency of the proposed method was evaluated by testing polyamide cooking utensils, and colored kitchenware, and good recoveries (between 90.0 and 99.0%) were obtained. The results showed that, as expected, polyamide cooking utensils had high levels of PAAs (11.2–65.2 µg L−1), while the migration rate of PAAs from the colored kitchenware was less than method LOQ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. X. Trier, B. Okholm, A. Foverskov, M.L. Binderup, J.H. Petersen, 2004–2009. Food Addit. Contam. Part A. 27, 1325–1335 (2010)

    Article  CAS  Google Scholar 

  2. L. France, Monographs on the evaluation of carcinogenic risks to humans: some aromatic amines, organic dyes and related exposures. WHO/IARC. (2010)

  3. EU 10/2011, Commission Regulation on plastic materials and articles intended to come into contact with food, OJEC. 1–89 (2011)

  4. O. Kirk, Encyclopedia of chemical technology, 3rd edn. (Wiley Interscience, New York, 1978)

    Google Scholar 

  5. R. Sendón, J. Bustos, J.J. Sánchez, P. Paseiro, M.E. Cirugeda, Food Addit. Contam. Part A. 27, 107–117 (2010)

    Article  Google Scholar 

  6. Q. Zhang, C. Wang, H. Bai, X. Wang, T. Wu, Q. Ma, J. Sep. Sci. 32, 2434–2441 (2009)

    Article  CAS  Google Scholar 

  7. H.M. Pinheiro, E. Touraud, O. Thomas, Dyes Pigm. 61, 121–139 (2004)

    Article  CAS  Google Scholar 

  8. B. Brauer, T. Funke, Determining primary aromatic-amines in migratory solutions. Dtsch Lebensmitt 87 (1991)

  9. C. Brede, I. Skjevrak, Food Addit. Contam. 21, 1115–1124 (2004)

    Article  CAS  Google Scholar 

  10. S. Sanllorente, L.A. Sarabia, M.C. Ortiz, Talanta 160, 46–55 (2016)

    Article  CAS  Google Scholar 

  11. Y.Y. Han, L.Y. Wang, Y.Y. Zhao, Y.Q. Li, L.Y. Liu, Chromatographia 76, 1747–1753 (2013)

    Article  CAS  Google Scholar 

  12. M.A. Farajzadeh, N. Nouri, Talanta 99, 1004–1010 (2012)

    Article  CAS  Google Scholar 

  13. X. Wang, Y. Chen, J. Chromatogr. A. 1216, 7324–7328 (2009)

    Article  CAS  Google Scholar 

  14. Q. Zhou, L. Pang, G. **e, J. **ao, P. Li, H. Bai, Int. J. Environ. Anal. Chem. 90, 1099–1107 (2010)

    Article  CAS  Google Scholar 

  15. X. Wang, L. Fu, G. Wei, J. Hu, X. Zhao, X. Liu, J. Sep. Sci. 31, 2932–2938 (2008)

    Article  CAS  Google Scholar 

  16. M. Shahrestani, M.S. Tehrani, S. Shoeibi, P. Aberoomand-Azar, S. Waqif-Husain, J. Anal. Methods Chem. 165, 16–29 (2018)

    Google Scholar 

  17. J.-S. Chiang, S.-D. Huang, Talanta 75, 70–75 (2008)

    Article  CAS  Google Scholar 

  18. R.A. Trenholm, B.J. Vanderford, J.E. Drewes, S.A. Snyder, J. Chromatogr. A. 1190, 253–262 (2008)

    Article  CAS  Google Scholar 

  19. C. Brede, I. Skjevrak, H. Herikstad, J. Chromatogr A. 983, 35–42 (2003)

    Article  CAS  Google Scholar 

  20. H. Deng, F. Yang, Z. Li, Z. Bian, Z. Fan, Y. Wang, J. Chromatogr. A. 1507, 37–44 (2017)

    Article  CAS  Google Scholar 

  21. M.Â.F. Perez, M. Padula, D. Moitinho, C.B.G. Bottoli, J. Chromatogr. A. 1602, 217–227 (2019)

    Article  CAS  Google Scholar 

  22. Y. Sanchis, C. Coscollà, M. Roca, V. Yusà, Talanta 138, 290–297 (2015)

    Article  CAS  Google Scholar 

  23. M. Mattarozzi, F. Lambertini, M. Suman, M. Careri, J. Chromatogr. A. 1320, 96–102 (2013)

    Article  CAS  Google Scholar 

  24. Codex Alimentarius. Combined compendium of food additive specifications, analytical methods, unsulfonated primary aromatic amines.4.

  25. M. Rezaee, Y. Assadi, M.-R. Milaniosseini, E. Aghaee, F. Ahmadi, S. Berijani, J. Chromatogr. A. 1116, 1–9 (2006)

    Article  CAS  Google Scholar 

  26. M. Rezaee, Y. Yamini, M. Faraji, J. Chromatogr. A. 1217, 2342–2357 (2010)

    Article  CAS  Google Scholar 

  27. Z.A. Alothman, M.A. Habila, E. Yilmaz, E.A. Alabdullkarem, M. Soylak, Measurement 153, 107394 (2020)

    Article  Google Scholar 

  28. Q. Zhang, K. De Oliveira Vigier, S. Royer, F. Jérôme, Chem. Soc. Rev. 41, 7108–7146 (2012)

    Article  CAS  Google Scholar 

  29. M. Torbati, A. Mohebbi, M.R. Afsharogaddam, M.A. Farajzadeh, Anal. Chim. Acta. 1032, 48–55 (2018)

    Article  CAS  Google Scholar 

  30. M. Pourmohammad, M. Faraji, S. Jafarinejad, Int. J. Environ. Anal. Chem. 100, 1146–1159 (2020)

    Article  CAS  Google Scholar 

  31. M. Faraji, J. Chromatogr. A.1591, 15–23 (2019)

  32. M. Faraji, Microchem. J. 150, 104130 (2019)

    Article  CAS  Google Scholar 

  33. M. Faraji, M. Mahmoodi-Maymand, F. Dastmalchi, Food Chem. 320, 126486 (2020)

    Article  CAS  Google Scholar 

  34. M. Faraji, F. Noormohammadi, M. Adeli, J. Environ. Chem. Eng. 8, 103948 (2020)

    Article  CAS  Google Scholar 

  35. A. Safavi, R. Ahmadi, A.M. Ramezani, Microchem. J. 143, 166–174 (2018)

    Article  CAS  Google Scholar 

  36. R. Ahmadi, G. Kazemi, A.M. Ramezani, A. Safavi, Microchem. J. 145, 501–507 (2019)

    Article  CAS  Google Scholar 

  37. Technical guidelines on testing the migration of primary aromatic amines from polyamide kitchenware and of formaldehyde from melamine kitchenware (EUR24815EN) (first ed.) (2011)

  38. B. H. Stuart, Infrared spectroscopy: Fundamentals and applications, John Wiley & Sons (2004).

  39. F.A. Hansen, P. Kubáň, E.L. Øiestad, S. Pedersen-Bjergaard, Anal. Chim. Acta. 1115, 23–32 (2020)

    Article  CAS  Google Scholar 

  40. N. Altunay, R. Gürkan, Microchem. J. 147, 999–1009 (2019)

    Article  CAS  Google Scholar 

  41. M. Akyüz, S. Ata, J. Pharm. Biomed. Anal. 47, 68–80 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support from the Iran National Science Foundation Fund (98008082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Faraji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraji, M., Salehi, N., Shirani, M. et al. Development of a deep eutectic solvent-based dispersive liquid–liquid microextraction method followed by back-extraction and diazotization coupled to spectrophotometry for determination of total primary aromatic amines from food simulants. J IRAN CHEM SOC 19, 3539–3548 (2022). https://doi.org/10.1007/s13738-022-02548-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02548-1

Keywords

Navigation