Log in

Enhanced activation of persulfate by magnetic CuFe-layered double hydroxide nanocomposites under visible light irradiation for degradation of quinoline

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Magnetic CuFe-layered double hydroxide (Fe3O4@CuFe-LDH) nanocomposites were prepared with different Cu/Fe molar ratios for boosting the persulfate (Ps) activation under visible light irradiation. The LDH products were characterized in different ways. Recalcitrant quinoline (Qu) was the target pollutant in the experiments. It was found that the presence of the LDH photocatalyst caused significant enhancement in the Qu degradation so that the Vis/Ps/Fe3O4@LDH process could give 92.1% degradation and 70.5% mineralization efficiencies after 30 min operations at room temperature. The appropriate optimum conditions were Ps concentration of 450 mg/L, catalyst dosage of only 35 mg/L and the Cu/Fe molar ratio in the LDH structure of 3:1. The solution natural pH of about 6 provided the best performance. The LDH photocatalyst regeneration, in five cycles, each after a simple elution, exhibited good stability and reusability with an overall decrease of 4.9% in the activity. The presence of some co-existing anions of aqueous solutions causes diminishing the process efficiency. A pathway of Qu mineralization was proposed based on the identified intermediates. Taking into account the electrical energy and the consumed materials, an operating cost of $31.6/m3 was estimated for one order of magnitude reduction in the pollutant concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Kermani, F. Mohammadi, B. Kakavandi, A. Esrafili, Z. Rostamifasih, Simultaneous catalytic degradation of 2, 4-D and MCPA herbicides using sulfate radical-based heterogeneous oxidation over persulfate activated by natural hematite (α-Fe2O3/PS). J. Phys. Chem. Solids 117, 49–59 (2018)

    Article  CAS  Google Scholar 

  2. Q. Ma, L.C. Nengzi, B. Li, Z. Wang, L. Liu, X. Cheng, Heterogeneously catalyzed persulfate with activated carbon coated with CoFe layered double hydroxide (AC@CoFe-LDH) for the degradation of lomefloxacin. Sep. Purif. Technol. 235, 116204 (2020)

    Article  CAS  Google Scholar 

  3. T.K. Lau, W. Chu, N.J. Graham, The aqueous degradation of butylated hydroxyanisole by UV/S2O82-: study of reaction mechanisms via dimerization and mineralization. Environ. Sci. Technol. 41, 613–619 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. C. Gong, F. Chen, Q. Yang, K. Luo, F. Yao, S. Wang, X. Wang, J. Wu, X. Li, D. Wang, Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubled hydroxide for efficient catalytic degradation of Rhoadmine B. Chem. Eng. J. 321, 222–232 (2017)

    Article  CAS  Google Scholar 

  5. M. Mahdi-Ahmed, S. Chiron, Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater. J. Hazard. Mater. 265, 41–46 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. Y. Ma, F. Chen, Q. Yang, Y. Zhong, X. Shu, F. Yao, T. **e, X. Li, D. Wang, G. Zeng, Sulfate radical induced degradation of Methyl Violet azo dye with CuFe layered doubled hydroxide as heterogeneous photoactivator of persulfate. J. Environ. Manage. 227, 406–414 (2018)

    Article  CAS  PubMed  Google Scholar 

  7. L. Wang, Q. Gao, Z. Li, Y. Wang, Improved removal of quinoline from wastewater using coke powder with inorganic ions. Processes 8, 156 (2020)

    Article  CAS  Google Scholar 

  8. M. Ghasemi, A. Khataee, P. Gholami, R.D.C. Soltani, Template-free microspheres decorated with Cu-Fe-NLDH for catalytic removal of gentamicin in heterogeneous electro-Fenton process. J. Environ. Manage 248, 109236 (2019)

    Article  CAS  PubMed  Google Scholar 

  9. C. Wang, K. Ma, T. Wu, M. Ye, P. Tan, K. Yan, Electrochemical mineralization pathway of quinoline by boron-doped diamond anodes. Chemosphere 149, 219–223 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. G. Zhang, X. Zhang, Y. Meng, G. Pan, Z. Ni, S. **a, Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: a review. Chem. Eng. J 392, 123684 (2020)

    Article  CAS  Google Scholar 

  11. K. Padoley, S. Mudliar, R. Pandey, Heterocyclic nitrogenous pollutants in the environment and their treatment options–an overview. Bioresource Technol. 99, 4029–4043 (2008)

    Article  CAS  Google Scholar 

  12. N.J. Pachupate, P.D. Vaidya, Catalytic wet oxidation of quinoline over Ru/C catalyst. J. Environ. Chem. Eng. 6, 883–889 (2018)

    Article  CAS  Google Scholar 

  13. H. Zhu, W. Ma, H. Han, Y. Han, W. Ma, Catalytic ozonation of quinoline using nano-MgO: Efficacy, pathways, mechanisms and its application to real biologically pretreated coal gasification wastewater. Chem. Eng. J. 327, 91–99 (2017)

    Article  CAS  Google Scholar 

  14. J. **g, W. Li, A. Boyd, Y. Zhang, V.L. Colvin, W.Y. William, Photocatalytic degradation of quinoline in aqueous TiO2 suspension. J. Hazard. Mater. 237, 247–255 (2012)

    Article  PubMed  Google Scholar 

  15. S. Pandeya, A. Tyagi, Synthetic approaches for quinoline and isoquinoline. ChemInform 43, 53–61 (2012)

    Article  Google Scholar 

  16. L.P. Ramírez, K. Landfester, Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes. Macromol. Chem. Phys. 204, 22–31 (2003)

    Article  Google Scholar 

  17. H.R. Mardani, (Cu/Ni)–Al layered double hydroxides@ Fe3O4 as efficient magnetic nanocomposite photocatalyst for visible-light degradation of methylene blue. Res. Chem. Intermediat. 43, 5795–5810 (2017)

    Article  CAS  Google Scholar 

  18. Z. Mesgari, J. Saien, Pollutant degradation over dye sensitized nitrogen doped titania substances in different configurations of visible light helical flow photoreactor. Sep. Purif. Technol. 185, 129–139 (2017)

    Article  CAS  Google Scholar 

  19. A. Nedoloujko, J. Kiwi, Parameters affecting the homogeneous and heterogeneous degradation of quinoline solutions in light-activated processes. J. Photochem. Photobiol. 110, 149–157 (1997)

    Article  CAS  Google Scholar 

  20. J. Saien, H. Shafiei, A. Amisama, Photo-activated periodate in homogeneous degradation and mineralization of quinoline: Optimization, kinetic, and energy consumption. Environ. Prog. Sustain. 36, 1621–1627 (2017)

    Article  CAS  Google Scholar 

  21. L. Lu, J. Li, D.H. Ng, P. Yang, P. Song, M. Zuo, Synthesis of novel hierarchically porous Fe3O4@ MgAl–LDH magnetic microspheres and its superb adsorption properties of dye from water. J. Ind. Eng. Chem. 46, 315–323 (2017)

    Article  CAS  Google Scholar 

  22. L. Adlnasab, M. Ezoddin, M.A. Karimi, N. Hatamikia, MCM-41@Cu–Fe–LDH magnetic nanoparticles modified with cationic surfactant for removal of Alizarin Yellow from water samples and its determination with HPLC. Res. Chem. Intermediat. 44, 3249–3265 (2018)

    Article  CAS  Google Scholar 

  23. H. Wang, M. **g, Y. Wu, W. Chen, Y. Ran, Effective degradation of phenol via Fenton reaction over CuNiFe layered double hydroxides. J. Hazard. Mater. 353, 53–61 (2018)

    Article  CAS  PubMed  Google Scholar 

  24. D. Dumbre, V.R. Choudhary, P. Selvakannan, Cu–Fe layered double hydroxide derived mixed metal oxide: environmentally benign catalyst for Ullmann coupling of aryl halides. Polyhedron 120, 180–184 (2016)

    Article  CAS  Google Scholar 

  25. J. Yan, Y. Chen, L. Qian, W. Gao, D. Ouyang, M. Chen, Heterogeneously catalyzed persulfate with a CuMgFe layered double hydroxide for the degradation of ethylbenzene. J. Hazard. Mater. 338, 372–380 (2017)

    Article  CAS  PubMed  Google Scholar 

  26. N. Baliarsingh, L. Mohapatra, K. Parida, Design and development of a visible light harvesting Ni–Zn/Cr–CO32− LDH system for hydrogen evolution. J. Mater. Chem. 1, 4236–4243 (2013)

    Article  CAS  Google Scholar 

  27. H. Hori, A. Yamamoto, E. Hayakawa, S. Taniyasu, N. Yamashita, S. Kutsuna, H. Kiatagawa, R. Arakawa, Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environ. Sci. Technol. 39, 2383–2388 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. J. Saien, S. Seyyedan, High performance homogeneous photo-activated persulfate for nicotinic acid removal, intensified with copper ions and ultrasonic waves. Process. Saf. Environ. Prot. 131, 300–306 (2019)

    Article  CAS  Google Scholar 

  29. M. Zulfakar, N. Hairul, H. Akmal, M.A. Rahman, Photocatalytic degradation of phenol in a fluidized bed reactor utilizing immobilized TiO2 photocatalyst: characterization and process studies. J. Appl. Sci. 11, 2320–2326 (2011)

    Article  CAS  Google Scholar 

  30. X. Gao, C. Maa, Y. Liua, L. **ng, Y. Yan, Self-induced Fenton reaction constructed by Fe(III) grafted BiVO4 nanosheets with improved photocatalytic performance and mechanism insight. Appl. Surf. Sci. 467–468, 673–683 (2019)

    Google Scholar 

  31. H.H. Adler, P.F. Kerr, Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals. Am. Mineral. J. 50, 132–147 (1965)

    CAS  Google Scholar 

  32. L.R. Bennedsen, J. Muff, E.G. Søgaard, Influence of chloride and carbonates on the reactivity of activated persulfate. Chemosphere 86, 1092–1097 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. M. Kluska, M. Komasińska, J. Jabłońska, W. Prukała, Challenges of HPLC determination of quinoline derivatives used in the treatment of malaria. J. Liq. Chromatogr. Related Technol. 41, 451–457 (2018)

    Article  CAS  Google Scholar 

  34. D. Gupta, R. Chauhan, N. Kumar, V. Singh, V.C. Srivastava, P. Mohanty, T.K. Mandal, Enhancing photocatalytic degradation of quinoline by ZnO:TiO2 mixed oxide: Optimization of operating parameters and mechanistic study. J. Environ. Manage 258, 110032 (2020)

    Article  CAS  PubMed  Google Scholar 

  35. J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman, Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric-and solar-driven systems (IUPAC Technical Report). Pure. Appl. Chem. 73, 627–637 (2001)

    Article  CAS  Google Scholar 

  36. O. Pourehie, J. Saien, Treatment of real petroleum refinery wastewater with alternative ferrous-assisted UV/persulfate homogeneous processes. Desalin Water Treat. 142, 140–147 (2019)

    Article  CAS  Google Scholar 

  37. US Energy Information Administration (EIA), Independent Statistics and Analysis, US Department of Energy, (2020) Washington DC.

  38. www.Alibaba.com, (2020).

Download references

Acknowledgements

The authors would like to acknowledge the Bu-Ali Sina University authorities for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Saien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saien, J., Nasri, M. & Pourehie, O. Enhanced activation of persulfate by magnetic CuFe-layered double hydroxide nanocomposites under visible light irradiation for degradation of quinoline. J IRAN CHEM SOC 19, 1515–1526 (2022). https://doi.org/10.1007/s13738-021-02400-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02400-y

Keywords

Navigation