Log in

A new electrochemical modified graphite pencil electrode developed for cholesterol assessing

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this regard, a new sensitive electrochemical sensor has been introduced for direct detection of cholesterol (CHL). The proposed sensor was manufactured by modifying the pencil graphite electrode (PGE) with copper nanoparticles (CuNPs) and indole (IND). The chemical modifiers of CuNPs and IND were easily deposited on PGE via electrodeposition procedure. The designed sensor exhibited a desired catalytic response to CHL with the archived parameters of α = 0.62, log Ks = 3.42 and Γ = 2. 74 × 10–8 in the optimized pH of 7. The morphology of the constructed films was characterized by scanning electron microscopy technique. For this sensor, a linear calibration curve is plotted within the range of 15–195 nmolL−1, and the limit of detection was achieved 4.98 nmolL−1. Furthermore, the offered sensor was employed to direct measuring of CHL in human serums, and the acceptable accuracies were acquired for this method without any side interferences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Hu, Z. Zhang, W.J. Shen, S. Azhar, Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr. Metab. 7, 47 (2010)

    Article  Google Scholar 

  2. J. Grouleff, S.J. Irudayam, K.K. Skeby, B. Schiøtt, The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim. Biophys. Acta 1848, 1783 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. C.N. Blesso, M.L. Fernandez, Dietary cholesterol, serum lipids, and heart disease: are eggs working for or against you. Nutrients 10, 426 (2018)

    Article  PubMed Central  Google Scholar 

  4. S.S. Muthu, N. Chaturvedi, M. Toeller, B. Ferriss, P. Rebolidi et al., Risk factors for coronary heart disease in type 1 diabetic patients in Europe. Diab. Care 24, 530 (2004)

    Article  Google Scholar 

  5. M.F. Piepoli, A.W. Hoes, S. Agewall, C. Albus, C. Brotons et al., European Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 37, 2315 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  6. Q. Sun, S. Fang, Y. Fang, Z. Qian, H. Feng, Fluorometric detection of cholesterol based on β-cyclodextrin functionalized carbon quantum dots via competitive host-guest recognition. Talanta 167, 513 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. K.I. Kitahara, I. Yoshihama, T. Hanada, H. Kokuba, S. Arai, Synthesis of monodispersed molecularly imprinted polymer particles for high-performance liquid chromatographic separation of cholesterol using templating polymerization in porous silica gel bound with cholesterol molecules on its surface. J. Chromatogr. A 1217, 7249 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. K. Hojo, H. Hakamata, A. Ito, A. Kotani, C. Furukawa, Y.-Y. Hosokawa, F. Kusu, Determination of total cholesterol in serum by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. A 1166, 135 (2007)

    Article  CAS  PubMed  Google Scholar 

  9. M.S. Mashkour, N. Abd, A. Almatori, A.M. Brbber, Spectrophotometric determination of Cholesterol by using procaine as coupling reagent. Int. J. Chem. Tech. Res. 10, 630–640 (2017)

    CAS  Google Scholar 

  10. M.A.H. Nawaz, M. Majdinasab, U. Latif, M. Nasir, G. Gokce, M.W. Anwar, A. Hayat, Development of a disposable electrochemical sensor for detection of cholesterol using differential pulse voltammetry. J. Pharm. Biomed. Anal. 159, 398 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. L. Yang, H. Zhao, S. Fan, G. Zhao, X. Ran, C.-P. Li, Electrochemical detection of cholesterol based on competitive host–guest recognition using a bcyclodextrin/poly(N-acetylaniline)/graphene modified electrode. RSC Adv. 5, 64146 (2015)

    Article  CAS  Google Scholar 

  12. Z. Wang, Q. Han, J. **a, L. **a, S. Bi, G. Shi, F. Zhang, Y. **a, Y. Li, L. **a, A novel phosphomolybdic acid–polypyrrole/graphene composite modified electrode for sensitive determination of folic acid. J. Electroanal. Chem. 726, 107 (2014)

    Article  CAS  Google Scholar 

  13. Y. Wang, H. Xu, J. Zhang, G. Li, Electrochemical sensors for clinic analysis. Sensors 8, 2043 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. L. Yang, H. Zhao, Y. Li, X. Ran, G. Deng, Y. Zhang, H. Ye, G. Zhao, C.P. Li, Indicator displacement assay for cholesterol electrochemical sensing using a calix[6]arene functionalized graphene-modified electrode. Analyst. 141, 270 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. L.C.S. Chou, C.C. Liu, Development of a molecular imprinting thick film electrochemical sensor for cholesterol detection. Sensor Actuat. B-Chem. 110, 204 (2005)

    Article  CAS  Google Scholar 

  16. Riyanto and Laksono, T.A., , Validation method for determination of cholesterol in human urine with electrochemical sensors using gold electrodes. AIP Conf. Proc. 1911, 020032 (2017)

    Article  Google Scholar 

  17. M. Saha, S. Das, Fabrication of a nonenzymatic cholesterol biosensor using carbon nanotubes from coconut oil. J. Nanostruct. Chem. 4, 94 (2014)

    Article  Google Scholar 

  18. P. Goswami, K. Goswami, D.K. Das, A novel non-enzymatic sensing probe for detection of cholesterol in solution. J. Chem. Pharm. Res. 6, 603 (2014)

    CAS  Google Scholar 

  19. N. Agnihotri, A.D. Chowdhury, A. De, Non-enzymatic electrochemical detection of cholesterol using β-cyclodextrin functionalized graphene. Biosens. Bioelectron. 63, 212 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. Y.-J. Lee, J.-Y. Park, Nonenzymatic free-cholesterol detection via a modified highly sensitive macroporous gold electrode with platinum nanoparticles. Biosens. Bioelectron. 26, 1353 (2010)

    Article  CAS  PubMed  Google Scholar 

  21. J. Yang, H. Lee, M. Cho, J. Nam, Y. Lee, Nonenzymatic cholesterol sensor based on spontaneous deposition of platinum nanoparticles on layer-by-layer assembled CNT thin film. Sens. Actuators B 171, 374 (2012)

    Article  Google Scholar 

  22. Y. Tonga, H. Li, H. Guan, J. Zhao, S. Majeed, S. Anjum, F. Liang, G. Xu, Electrochemical cholesterol sensor based on carbon nanotube@molecularly imprinted polymer modified ceramic carbon electrode. Biosens. Bioelectron. 47, 553 (2013)

    Article  Google Scholar 

  23. D. Deletioğlu, E. Hasdemir, A.O. Solak, Z. Üstündağ, R. Güzel, Preparation and characterization of poly(indole-3-carboxaldehyde) film at the glassy carbon surface. Thin Solid Films 519, 784 (2010)

    Article  Google Scholar 

  24. W. Zhou, J. Xu, Progress in conjugated polyindoles: synthesis, polymerization mechanisms, properties, and applications. Polym. Rev. 57, 248 (2017)

    Article  CAS  Google Scholar 

  25. X. Ma, W. Zhou, D. Mo, B. Lu, F. Jiang, J. Xu, One-step template-free electrodeposition of novel poly(indole-7-carboxylic acid) nanowires and their high capacitance properties. RSC Adv. 5, 3215 (2015)

    Article  CAS  Google Scholar 

  26. R.J. Waltma, Electrically conducting polymers: a review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications towards technology. Can. J. Chem. 64, 76 (2017)

    Article  Google Scholar 

  27. R. Mishra, N.R. Nirala, R.K. Pandey, R.P. Ojha, R. Prakash, Homogenous dispersion of MoS2 nanosheets in polyindole matrix at air-water interface assisted by Langmuir technique. Langmuir 33, 13572 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. V. Guarino, S. Zuppolini, A. Borriello, L. Ambrosio, Electro-active polymers (EAPs): a promising route to design bio-organic/bioinspired platforms with on demand functionalities. Polymers 8, 185 (2016)

    Article  PubMed Central  Google Scholar 

  29. P.S. Abthagir, R. Saraswathi, Charge transport and thermal properties of polyindole, polycarbazole and their derivatives. Thermochim. Acta 424(1–2), 25–35 (2004)

    Article  CAS  Google Scholar 

  30. G. Wang, A. Morrin, M. Li, N. Liu, X. Luo, Nanomaterial-doped conducting polymers for electrochemical sensors and biosensors. J. Mater. Chem. B 6, 4173 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. P. Sondhi, M.H.U. Maruf, K.J. Stine, Nanomaterials for biosensing lipopolysaccharide. Biosensors 10(1), 2 (2020)

    Article  CAS  Google Scholar 

  32. M. Pirzada, Z. Altintas, Nanomaterials for healthcare biosensing applications. Sensors 19(23), 5311 (2019)

    Article  PubMed Central  Google Scholar 

  33. R. Batool, A. Rhouati, M.H. Nawaz, A. Hayat, J.L. Marty, A review of the construction of nano-hybrids for electrochemical biosensing of glucose. Biosensors 9, 46 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  34. L. Mohammadi-Behzad, M.B. Gholivand, M. Shamsipur, K. Gholivand, A. Barati, A. Gholami, Highly sensitive voltammetric sensor based on immobilization of bisphosphoramidate-derivative and quantum dots onto multi-walled carbon nanotubes modified gold electrode for the electrocatalytic determination of olanzapine. Mater. Sci. Eng. C 60, 67 (2016)

    Article  CAS  Google Scholar 

  35. M.B. Gholivand, L. Mohammadi-Behzad, Fabrication of a highly sensitive sumatriptan sensor based on ultrasonic-electrodeposition of Pt nanoparticles on the ZrO2 nanoparticles modified carbon paste electrode. J. Electroanal. Chem. 712, 33 (2014)

    Article  CAS  Google Scholar 

  36. S.H. Lee, B.H. Jun, Silver nanoparticles: synthesis and application for nanomedicine. Intn. Jn Moln Sci. 20, 865 (2019)

    Article  CAS  Google Scholar 

  37. S. Soltani, R. Davarnejad, F. Rahimi, T. Matin, E. Ahmadi, Copper nanoparticles/poly-neutral red modified pencil graphite electrode for electroanalysis of folic acid. J. Chem. Pharm. Res. 10, 99 (2018)

    CAS  Google Scholar 

  38. J.A. Jiménez, Thermal effects on the surface plasmon resonance of Cu nanoparticles in phosphate glass: impact on Cu+ luminescence. Nanoscale Adv. 1, 1826 (2019)

    Article  Google Scholar 

  39. E.G. Halevas, A.A. Pantazaki, Copper nanoparticles as therapeutic anticancer agents. Nanomed. Nanotechnol. J. 2, 119 (2018)

    Google Scholar 

  40. Y. Oztekina, M. Tok, E. Bilici, L. Mikoliunaite, Z. Yazicigil, A. Ramanavicienec, A. Ramanavicius, Copper nanoparticle modified carbon electrode for determination of dopamine. Electrochim. Acta 76, 201 (2012)

    Article  Google Scholar 

  41. E. Alipour, M.R. Majidi, A. Saadatirad, S.M. Golabi, A.M. Alizadeh, Simultaneous determination of dopamine and uric acid in biological samples on the pretreated pencil graphite electrode. Electrochim. Acta 91, 36 (2013)

    Article  CAS  Google Scholar 

  42. Z.Q. Gong, A.N.A. Sujari, S. Ab Ghani, Electrochemical fabrication, characterization and application of carboxylic multi-walled carbon nanotube modified composite pencil graphite electrodes. Electrochim. Acta 65, 257–265 (2012)

    Article  CAS  Google Scholar 

  43. A. Kawde, N. Baig, M. Sajid, Graphite pencil electrodes as electrochemical sensors for environmental analysis: a review of features, developments, and applications. RSC Adv. 94, 91325 (2016)

    Article  Google Scholar 

  44. S. Kouchakinejad, S. Babaee, F. Roshani, R. Kouchakinejad, S. Kaki, The performance of the new modified pencil graphite electrode in quantifying of insulin. Chem. Phys. Lett. 759, 137987 (2020)

    Article  CAS  Google Scholar 

  45. B.B. Berkes, A.S. Bandarenka, G. Inzelt, Electropolymerization: Further insight into the formation of conducting polyindole thin films. . Phys. Chem. C 119(4), 1996–2003 (2015)

    Article  CAS  Google Scholar 

  46. T.Y. Wu, C.W. Kuo, Y.L. Chen, J.K. Chang, Copolymers based on indole-6-carboxylic acid and 3, 4-ethylenedioxythiophene as platinum catalyst support for methanol oxidation. Catalysts 5, 1657–1672 (2015)

    Article  CAS  Google Scholar 

  47. J.W. Morzycki, A. Sobkowiak, Electrochemical oxidation of cholesterol. Beilstein J. Org. Chem. 11, 392–402 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  48. E. Ghanbary, Z. Asiabani, N. Hosseini, S.H. Kiaie, S. Kaki, H. Ghasempour, A. Babakhanian, The development of a new modified graphite pencil electrode for quantitative detection of Gibberellic acid (GA3) herbal hormone. Microchem. J. 157, 105005 (2020)

    Article  CAS  Google Scholar 

  49. M.-M. Abolghasemi, A. Ghorbani-Cheghamarani, A. Babakhanian, A novel electrochemical sensing platform based on Pt/PPy/Eosin-Y for the determination of cadmium. New J. Chem. 41, 11335 (2017)

    Article  CAS  Google Scholar 

  50. K. Derina, E. Korotkova, Y. Taishibekova, L. Salkeeva, B. Kratochvil, J. Barek, Electrochemical nonenzymatic sensor for cholesterol determination in food. Anal. Bioanal. Chem. 16, 5085 (2018)

    Article  Google Scholar 

  51. E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 101, 19 (1979)

    Article  CAS  Google Scholar 

  52. Z. Azizi, A. Babakhanian, Fabricating a new electrochemically modified pencil graphite electrode based on acetophenone (2, 4-dinitrophenyl) hydrazone for determining selenium in food and water samples. Anal. Methods 10, 5205 (2018)

    Article  CAS  Google Scholar 

  53. M. Murata, T. Ide, Determination of cholesterol in sub-nanomolar quantities in biological fluids by high-performance liquid chromatography. J. Chromatogr. B: Biomed. Sci. Appl. 579, 329–333 (1992)

    Article  CAS  Google Scholar 

  54. S. Rostami-Javanroudi, A. Babakhanian, New electrochemical sensor for direct quantification of vitamin K in human blood serum. Microchem. J. 163, 105716 (2021)

    Article  CAS  Google Scholar 

  55. M. Alagappan, S. Immanuel, R. Sivasubramanian, A. Kandaswamy, Development of cholesterol biosensor using Au nanoparticles decorated f-MWCNT covered with polypyrrole network. Arabian J. Chem. 13, 2001–2010 (2020)

    Article  CAS  Google Scholar 

  56. S.J. Willyam, E. Saepudin, T.A. Ivandini, β-Cyclodextrin/Fe3O4 nanocomposites for an electrochemical non-enzymatic cholesterol sensor. Anal. Methods 12(27), 3454–61 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Shahriarinour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahriarinour, M., Rahimi, F., Siahbani, E. et al. A new electrochemical modified graphite pencil electrode developed for cholesterol assessing. J IRAN CHEM SOC 19, 159–171 (2022). https://doi.org/10.1007/s13738-021-02296-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02296-8

Keywords

Navigation