Log in

Flame atomic absorption spectrometric determination of total chromium and cadmium in bean samples after ultrasonic-assisted microextraction using ionic liquid Aliquat-336

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A new and rapid microextraction approach termed as ultrasonic-assisted ionic liquid-based microextraction (UA-ILME) was developed using ionic liquid Aliquat-336 as extraction solvent for the extraction of chromium and cadmium in bean samples collected from different regions in Turkey. The total amounts of analytes in the samples were measured by flame atomic absorption spectrophotometry. The basis of the extraction step is based on the complexation of Cr(III) and Cd(II) with diethyldithiocarbamate at pH 4.0. The hydrophobic ternary complexes containing analytes were then rapidly extracted from the sample solution to the ionic phase under the ultrasonic effect using tricaprylylmethylammonium chloride (Aliquat-336). Some experimental variables (pH, ligand amount, extraction solvent volume, ultrasound time, extraction temperature and sample volume) were optimized in detail. Following the optimization steps, the limits of detection (LODs, 3Sblank/m) for Cr(III) and Cd(II) were calculated as 0.45 ng mL−1 with linear range of 1.5–380 ng mL−1 and 0.25 ng mL−1 with linear range of 0.8–220 ng mL−1, respectively. Enrichment factors and average recoveries were ranged from 125.8–96.4 to 92.7–106.5%, respectively. The accuracy and precision of the method were validated by analyzing a certified reference material and spiked recovery tests. The UA-ILME method was successfully applied to the determination of Cd and Cr in the samples, highlighting that the matrix ions under consideration do not affect the extraction and determination steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. S. Stankovic, M. Jovic, A.R. Stankovic, L. Katsikas, Environmental Chemistry for a Sustainable World (Springer, Dordrecht, 2012), p. 311

    Google Scholar 

  2. P. Adamse, H.J. Van der Fels-Klerx, J. De Jong, Food Addit. Contam. Part A 34, 1298 (2017)

    CAS  Google Scholar 

  3. Y. Zhao, J. Wu, D. Shang, J. Ning, Y. Zhai, X. Sheng, H. Ding, Food Chem. 168, 48 (2015)

    CAS  PubMed  Google Scholar 

  4. R.J. Person, E.J. Tokar, Y. Xu, R. Orihuela, N.N.O. Ngalame, M.P. Waalkes, Toxicol. Appl. Pharmacol. 273, 281 (2013)

    CAS  PubMed  Google Scholar 

  5. S. Bali, M.A. Tofanelli, R.D. Ernst, E.M. Eyring, Biomass Bioenergy. 42, 224 (2012)

    CAS  Google Scholar 

  6. Y. Liu, X. Wang, Anal. Methods 5(6), 1442 (2013)

    CAS  Google Scholar 

  7. N. Altunay, A. Elik, D. Bingöl, Biol. Trace Elem. Res. 1, 8 (2020)

    Google Scholar 

  8. J. Terán-Baamonde, A. Carlosena, R.M. Soto-Ferreiro, J.M. Andrade, A. Cantarero-Roldán, S. Muniategui-Lorenzo, J. Anal. At. Spectrom. 35(3), 580 (2020)

    Google Scholar 

  9. C.E.R. de Paula, G.F. Cruz, C.M.S. Rezende, R.J. Cassella, Microchem. J. 127, 1 (2016)

    Google Scholar 

  10. L.A. Meira, J.S. Almeida, F.D.S. Dias, L.S. Teixeira, Microchem. J. 147, 660 (2016)

    Google Scholar 

  11. Y.S. Hong, J.Y. Choi, E.Y. Nho, I.M. Hwang, N. Khan, N. Jamila, K.S. Kim, J. Sci. Food Agric. 99, 1870 (2019)

    CAS  PubMed  Google Scholar 

  12. Z. Guo, X.K. Luo, Y.H. Li, Q.N. Zhao, M.M. Li, Y.T. Zhao, C. Ma, J. Colloid Interface Sci. 490, 11 (2017)

    CAS  PubMed  Google Scholar 

  13. M.M. Özcan, F.Y.A. Juhaimi, Environ. Monit. Assess. 184, 2373 (2012)

    PubMed  Google Scholar 

  14. S. Döker, M. Uslu, Food Anal. Methods 7, 683 (2014)

    Google Scholar 

  15. E. Er, Ö.E. Maltepe, S. Bakirdere, Microchem. J. 143, 393 (2018)

    Google Scholar 

  16. A.V. Zmozinski, T. Pretto, A.R. Borges, Á.T. Duarte, M.G.R. Vale, Microchem. J. 128, 89 (2016)

    CAS  Google Scholar 

  17. N. Altunay, R. Gürkan, E. Yıldırım, Food Anal. Methods 9, 2960 (2016)

    Google Scholar 

  18. N. Altunay, R. Gürkan, U. Orhan, Food Addit. Contam. Part A 32, 1475 (2015)

    CAS  Google Scholar 

  19. R. Gürkan, N. Altunay, Pol. J. Food Nutr. Sci. 63, 253 (2013)

    Google Scholar 

  20. B. Feist, B. Mikula, Food Chem. 147, 225 (2014)

    CAS  PubMed  Google Scholar 

  21. O. Krüger, G. Christoph, U. Kalbe, W. Berger, Talanta 85, 1428 (2011)

    PubMed  Google Scholar 

  22. M.S. El-Shahawi, H.M. Al-Saidi, TrAC Trends Anal. Chem. 44, 12 (2013)

    CAS  Google Scholar 

  23. L. Okenicová, M. Žemberyová, S. Procházková, Environ. Chem. Lett. 14, 67 (2016)

    Google Scholar 

  24. P.A. Mello, J.S. Pereira, M.F. Mesko, J. Barin, E.M. Flores, Anal. Chim. Acta 746, 15 (2012)

    CAS  PubMed  Google Scholar 

  25. M. Naushad, A. Mittal, M. Rathore, V. Gupta, Desalin. Water Treat. 54, 2883 (2015)

    CAS  Google Scholar 

  26. J.M. Kokosa, TrAC Trends Anal. Chem. 71, 194 (2015)

    CAS  Google Scholar 

  27. M. Tuzen, O.D. Uluozlu, D. Mendil, M. Soylak, L.O. Machado, W.N. Dos Santos, S.L. Ferreira, Food Chem. 245, 380 (2018)

    CAS  PubMed  Google Scholar 

  28. A. Elik, A. Demirbas, N. Altunay, Biol. Trace Elem. Res. 1, 10 (2020)

    Google Scholar 

  29. J. Chen, X. Zhu, Food Chem. 200, 10 (2016)

    CAS  PubMed  Google Scholar 

  30. H.M. Albishri, N.A. Aldawsari, D.A. El-Hady, Electrophoresis 37, 2462 (2016)

    CAS  PubMed  Google Scholar 

  31. N. Altunay, A. Elik, R. Gürkan, Microchem. J. 147, 277 (2019)

    CAS  Google Scholar 

  32. M. Tuzen, T.G. Kazi, D. Citak, M. Soylak, J. Anal. At. Spectrom. 28, 1441 (2013)

    Google Scholar 

  33. F. Kubota, M. Goto, Sol. Extr. Res. Dev. 13, 23 (2016)

    Google Scholar 

  34. F. Zhou, Y. Liang, W. Liu, Chem. Soc. Rev. 38, 2590 (2009)

    CAS  PubMed  Google Scholar 

  35. J. Ding, D.W. Armstrong, Chirality 17, 281 (2005)

    CAS  PubMed  Google Scholar 

  36. R. Patel, M. Kumari, A.B. Khan, Appl. Biochem. Biotechnol. 172, 3701 (2014)

    CAS  PubMed  Google Scholar 

  37. Z. Gao, X. Ma, Anal. Chim. Acta 702(1), 50 (2011)

    CAS  PubMed  Google Scholar 

  38. X. Ma, M. Huang, Z. Li, J. Wu, J. Hazard. Mater. 194, 24 (2011)

    CAS  PubMed  Google Scholar 

  39. S.M. Sorouraddin, M.A. Farajzadeh, M. Ghorbani, J. Iran. Chem. Soc. 15(1), 201 (2018)

    CAS  Google Scholar 

  40. M. Zhang, X. Ma, J. Li, R. Huang, L. Guo, X. Zhang, G. Zeng, Chemosphere 234, 196 (2019)

    CAS  PubMed  Google Scholar 

  41. F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, R. Grimes, Advanced Inorganic Chemistry (Wiley, New York, 1988), p. 5

    Google Scholar 

  42. J. An, K.L. Rahn, J.L. Anderson, Talanta 167, 268 (2017)

    CAS  PubMed  Google Scholar 

  43. M. Aghamohammadi, M. Faraji, P. Shahdousti, H. Kalhor, A. Saleh, Phytochem. Anal. 26, 209 (2015)

    CAS  PubMed  Google Scholar 

  44. G. Giakisikli, P. Zachariadis, I. Kila, N. Teshima, A. Anthemidis, Anal. Lett. 49, 929 (2016)

    CAS  Google Scholar 

  45. M. Behbahani, P.G. Hassanlou, M.M. Amini, F. Omidi, A. Esrafili, M. Farzadkia, A. Bagheri, Food Chem. 157, 82 (2015)

    Google Scholar 

  46. M. Soylak, E. Yilmaz, Anal. Lett. 48, 464 (2015)

    CAS  Google Scholar 

  47. A. Afkhami, M. Saber-Tehrani, H. Bagheri, T. Madrakian, Microchim. Acta 172(1–2), 125 (2011)

    CAS  Google Scholar 

  48. T. Daşbaşı, Ş. Saçmacı, A. Ülgen, Ş. Kartal, Food Chem. 197, 107 (2016)

    PubMed  Google Scholar 

  49. M. Fırat, S. Bakırdere, M.S. Fındıkoğlu, E.B. Kafa, E. Yazıcı, M. Yolcu, F. Turak, Spectrochim. Acta Part B 129, 37 (2017)

    Google Scholar 

  50. M. Roushani, Y.M. Baghelani, S. Abbasi, M. Mavaei, S.Z. Mohammadi, Int. J. Veg. Sci. 23, 304 (2017)

    Google Scholar 

  51. A. Elik, N. Altunay, R. Gürkan, J. Mol. Liq. 247, 262 (2017)

    CAS  Google Scholar 

  52. M. Fasihi, M. Rajabi, B. Barfi, S.M. Sajjadi, Int. J. Environ. Anal. Chem. 1, 13 (2020)

    Google Scholar 

Download references

Funding

Authors have no financial relationship with the organization that sponsored the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nail Altunay.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Informed consent

On behalf of other authors, the informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elik, A., Karakoy, T., Çilesiz, Y. et al. Flame atomic absorption spectrometric determination of total chromium and cadmium in bean samples after ultrasonic-assisted microextraction using ionic liquid Aliquat-336. J IRAN CHEM SOC 18, 117–127 (2021). https://doi.org/10.1007/s13738-020-02009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-02009-7

Keywords

Navigation