Log in

Green-synthesized Cu2O nanoaggregates incorporated on β-cyclodextrin for catalytic reduction and electrochemical sensing

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Microwave-assisted methods are facile synthetic routes for the synthesis of nanoparticles. Cu2O nanoaggregates (Cu2O NA) were synthesized using Bauhinia purpurea (B. purpurea) leaf extract via microwave method. The incorporation of Cu2O NA in β-cyclodextrin generated Cu2O-β-CD nanocomposite (Cu2O-β-CD NC). The structure and morphology of the Cu2O-β-CD NC were investigated using characterization techniques like Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The crystallines Cu2O NA and Cu2O-β-CD NC have size 30.65 and 19.73 nm, respectively. The Cu2O-β-CD NC revealed excellent catalytic activities for the reduction of nitro aromatic compounds in the presence of NaBH4. Gold electrode modified with Cu2O-β-CD NC is effective for the sensing levofloxacin. The electrocatalytic performance of the modified electrode was optimized, and the limit of detection was found to be 6.93 nM. The synergistic effect between the semiconductor Cu2O nanoaggregates and high adsorption capability of β-CD provided a better platform for the fast degradation of 4-nitrophenol and enhanced sensitivity for the determination of levofloxacin.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Aravind, M. Sebastian, B. Mathew, Green synthesized unmodified silver nanoparticles as a multi-sensor for Cr(III) ions. Environ. Sci. Water Res. Technol. 4, 1531–1542 (2018)

    CAS  Google Scholar 

  2. M.R. Nasrabadi, S.M. Pourmortazavi, S.A. Shandiz, F. Ahmadi, H. Batooli, Green synthesis of silver nanoparticles using Eucalyptus leucoxylon leaves extract and evaluating the antioxidant activities of extract. Nat. Prod. Res. 28, 1964–1969 (2014)

    Google Scholar 

  3. H. Amani, R. Habibey, F. Shokri, S.J. Hajmiresmail, O. Akhavan, A. Mashaghi, H. Pazoki-Toroudi, Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling. Sci. Rep. 9, 6044 (2019)

    PubMed  PubMed Central  Google Scholar 

  4. A. Firooz, A. Khatami, A. Khamesipour, M. Nassiri-Kashani, F. Behnia, M. Nilforoushzadeh, H. Pazoki-Toroudi, Y. Dowlati, Intralesional injection of 2% zinc sulfate solution in the treatment of acute old world cutaneous leishmaniasis: a randomized, double-blind, controlled clinical trial. J. Drugs Dermatol. 4, 73–79 (2005)

    PubMed  Google Scholar 

  5. S.P. Goutam, G. Saxena, V. Singh, A.K. Yadav, R.N. Bharagava, K.B. Thapa, Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem. Eng. J. 336, 386–396 (2018)

    CAS  Google Scholar 

  6. J. Santhoshkumar, S.V. Kumar, S. Rajeshkumar, Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resour. Effic. Technol. 3, 459–465 (2017)

    Google Scholar 

  7. G.M. Sulaiman, A.T. Tawfeeq, M.D. Jaaffer, Biogenic synthesis of copper oxide nanoparticles using olea europaea leaf extract and evaluation of their toxicity activities: an in vivo and in vitro study. Biotechnol. Progr. 34, 218–230 (2017)

    Google Scholar 

  8. S. Sun, Z. Yang, Recent advances in tuning crystal facets of polyhedral cuprous oxide architectures. RSC Adv. 4, 3804–3822 (2014)

    CAS  Google Scholar 

  9. R. Borah, E. Saikia, S.J. Bora, B. Chetia, On-water synthesis of phenols using biogenic Cu2O nanoparticles without using H2O2. RSC. Adv. 6, 100443–100447 (2016)

    CAS  Google Scholar 

  10. J.S. Kumar, M. Jana, P. Khanra, P. Samanta, H. Koo, N.C. Murmu, T. Kuila, One pot synthesis of Cu2O/RGO composite using mango bark extract and exploration of its electrochemical properties. Electrochim. Acta 193, 104–115 (2016)

    CAS  Google Scholar 

  11. R. Borah, E. Saikia, S.J. Bora, B. Chetia, Banana pulp extract mediated synthesis of Cu2O nanoparticles: an efficient heterogeneous catalyst for the ipso-hydroxylation of arylboronic acids. Tetrahedron Lett. 58, 1211–1215 (2017)

    CAS  Google Scholar 

  12. R. Vijayan, S. Joseph, B. Mathew, Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artif. Cells Nanomed. Biotechnol. 46, 861–871 (2017)

    PubMed  Google Scholar 

  13. S. Francis, S. Joseph, E.P. Koshy, B. Mathew, Microwave assisted green synthesis of silver nanoparticles using leaf extract of elephantopus scaber and its environmental and biological applications. Artif. Cells Nanomed. Biotechnol. 46, 795–804 (2017)

    PubMed  Google Scholar 

  14. A. Aravind, M. Sebastian, B. Mathew, Green silver nanoparticles as a multifunctional sensor for toxic Cd(II) ions. New J. Chem. 42, 15022–15031 (2018)

    CAS  Google Scholar 

  15. R. Vijayan, S. Joseph, B. Mathew, Anticancer, antimicrobial, antioxidant, and catalytic activities of green-synthesized silver and gold nanoparticles using Bauhinia purpurea leaf extract. Bioprocess Biosyst. Eng. 42, 305–319 (2018)

    PubMed  Google Scholar 

  16. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Cheminform abstract: nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)

    CAS  PubMed  Google Scholar 

  17. I. Roy, A. Bhattacharyya, G. Sarkar, N.R. Saha, D. Rana, P.P. Ghosh, M. Palit, A.R. Das, D. Chattopadhyay, In situ synthesis of a reduced graphene oxide/cuprous oxide nanocomposite: a reusable catalyst. RSC Adv. 4, 52044–52052 (2014)

    CAS  Google Scholar 

  18. J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li, Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem. Mater. 18,  867–871 (2006)

    CAS  Google Scholar 

  19. J.M. George, A. Antony, B. Mathew, Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchim. Acta 185, 358 (2018)

    Google Scholar 

  20. M.H. Ghanbari, F. Shahdost-Fard, M. Rostami, A. Khoshroo, A. Sobhani-Nasab, N. Gholipour, H. Salehzadeh, M.R. Ganjali, M. Rahimi-Nasrabadi, F. Ahmadi, Electrochemical determination of the antipsychotic medication clozapine by a carbon paste electrode modified with a nanostructure prepared from titania nanoparticles and copper oxide. Microchim. Acta 186, 698 (2019)

    Google Scholar 

  21. G. Crini, Review: a history of cyclodextrins. Chem. Rev. 114, 10940–10975 (2014)

    CAS  PubMed  Google Scholar 

  22. N. Sharma, A. Baldi, Exploring versatile applications of cyclodextrins: an overview. Drug Deliv. 23, 729–747 (2016)

    CAS  Google Scholar 

  23. Z.-Y. **, Cyclodextrin Chemistry, World Scientific/Chemical Industry Press, China (2012)

  24. V. Velusamy, S. Palanisamy, T. Kokulnathan, S.-W. Chen, T.C.K. Yang, C.E. Banks, S.K. Pramanik, Novel electrochemical synthesis of copper oxide nanoparticles decorated graphene-β-cyclodextrin composite for trace-level detection of antibiotic drug metronidazole. J. Colloids Interface Sci. 530, 37–45 (2018)

    CAS  Google Scholar 

  25. M.H. Ghanbari, F. Shahdost-fard, A. Khoshroo, M. Rahimi-Nasrabadi, M.R. Ganjali, M. Wysokowski, T. Rębiś, S. Żółtowska-Aksamitowska, T. Jesionowski, P. Rahimi, Y. Joseph, H. Ehrlich, A nanocomposite consisting of reduced graphene oxide and electropolymerized β-cyclodextrin for voltammetric sensing of levofloxacin. Microchim. Acta 186, 438 (2019)

    Google Scholar 

  26. L. Kong, G. Fang, Y. Kong, M. **e, V. Natarajan, D. Zhou, J. Zhan, Cu2O@β-cyclodextrin as a synergistic catalyst for hydroxyl radical generation and molecular recognitive destruction of aromatic pollutants at neutral pH. J. Hazard. Mater. 357, 109–118 (2018)

    CAS  PubMed  Google Scholar 

  27. T.R. Mandlimath, B. Gopal, Catalytic activity of first row transition metal oxides in the conversion of p-nitrophenol to p-aminophenol. J. Mol. Catal. A Chem. 350, 9–15 (2011)

    CAS  Google Scholar 

  28. Y. Ma, Y. Ni, F. Guo, N. **ang, Flowerlike copper(ii)-based coordination polymers particles: rapid room-temperature fabrication, influencing factors, and transformation toward CuO microstructures with good catalytic activity for the reduction of 4-nitrophenol. Cryst. Growth Des. 15, 2243–2252 (2015)

    CAS  Google Scholar 

  29. K.-L. Wu, X.-W. Wei, X.-M. Zhou, D.-H. Wu, X.-W. Liu, Y. Ye, Q. Wang, NiCo2 Alloys: controllable synthesis, magnetic properties, and catalytic applications in reduction of 4-nitrophenol. J. Phys. Chem. C 115, 16268–16274 (2011)

    CAS  Google Scholar 

  30. Y. Wu, M. Wen, Q. Wu, H. Fang, Ni/graphene nanostructure and its electron-enhanced catalytic action for hydrogenation reaction of nitrophenol. J. Phys. Chem. C 118, 6307–6313 (2014)

    CAS  Google Scholar 

  31. F.M. Wagenlehner, O. Umeh, J. Steenbergen, G. Yuan, R.O. Darouiche, Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: a randomised, double-blind, phase 3 trial (ASPECT-cUTI). Lancet 385, 1949–1956 (2015)

    CAS  PubMed  Google Scholar 

  32. A.F. Faria, M.V.N. de Souza, M.V. de Almeida, M.A.L. de Oliveira, Simultaneous separation of five fluoroquinolone antibiotics by capillary zone electrophoresis. Anal. Chim. Acta 579, 185–192 (2006)

    CAS  PubMed  Google Scholar 

  33. J.P. Gisbert, F. Morena, Systematic review and meta-analysis: levofloxacin-based rescue regimens after Helicobacter pylori treatment failure. Aliment. Pharmacol. Ther. 23, 35–44 (2006)

    CAS  PubMed  Google Scholar 

  34. F. Petitjeans, J. Nadaud, J.P. Perez, B. Debien, F. Olive, T. Villevieille, B. Pats, A case of rhabdomyolysis with fatal outcome after a treatment with levofloxacin. Eur. J. Clin. Pharmacol. 59, 779–780 (2003)

    PubMed  Google Scholar 

  35. G. Famularo, M. Pizzicannella, L. Gasbarrone, Levofloxacin and seizures: what risk for elderly adults? J. Am. Geriatr. Soc. 62, 2018–2019 (2014)

    PubMed  Google Scholar 

  36. J.C. Aguilar-Carrasco, J. Hernández-Pineda, J.M. Jiménez-Andrade, F.J. Flores-Murrieta, M.D.C. Carrasco-Portugal, J.S. López-Canales, Rapid and sensitive determination of levofloxacin in microsamples of human plasma by high-performance liquid chromatography and its application in a pharmacokinetic study. Biomed. Chromatogr. 29, 341–345 (2014)

    PubMed  Google Scholar 

  37. H. Sun, H. Wang, X. Ge, Simultaneous determination of the combined drugs of ceftriaxone sodium, metronidazole, and levofloxacin in human urine by high-performance liquid chromatography. J. Clin. Lab. Anal. 26, 486–492 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. J. González, Spectrofluorimetric determination of levofloxacin in tablets, human urine and serum. Talanta 52, 1149–1156 (2000)

    PubMed  Google Scholar 

  39. A.A. Salem, H.A. Mossa, Method validation and determinations of levofloxacin, metronidazole and sulfamethoxazole in an aqueous pharmaceutical, urine and blood plasma samples using quantitative nuclear magnetic resonance spectrometry. Talanta 88, 104–114 (2012)

    CAS  PubMed  Google Scholar 

  40. I.F. Al-Momani, Flow injection spectrophotometric determination of the antibacterial levofloxacin in tablets and human urine. Anal. Lett. 39, 741–750 (2006)

    CAS  Google Scholar 

  41. Z. Liu, W. Cao, P.-H. Huang, G.-Y. Tian, J.L. Kirtley, Determination of levofloxacin and norfloxacin by capillary electrophoresis with electrochemiluminescence detection and applications in human urine. Electrophoresis 29, 3207–3212 (2008)

    CAS  PubMed  Google Scholar 

  42. X. Shao, Y. Li, Y. Liu, Z. Song, Rapid determination of levofloxacin in pharmaceuticals and biological fluids using a new chemiluminescence system. J. Anal. Chem. 66, 102–107 (2011)

    CAS  Google Scholar 

  43. A. Khoshroo, L. Hosseinzadeh, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, F. Ahmadi, Silver nanofibers/ionic liquid nanocomposite based electrochemical sensor for detection of clonazepam via electrochemically amplified detection. Microchem. J. 145, 1185–1190 (2019)

    CAS  Google Scholar 

  44. M.H. Ghanbari, F. Shahdost-Fard, H. Salehzadeh, M.R. Ganjali, M. Iman, M. Rahimi-Nasrabadi, F. Ahmadi, A nanocomposite prepared from reduced graphene oxide, gold nanoparticles and poly(2-amino-5-mercapto-1,3,4-thiadiazole) for use in an electrochemical sensor for doxorubicin. Microchim. Acta 186, 641 (2019)

    Google Scholar 

  45. M. Rahimi-Nasrabadi, A. Khoshroo, M. Mazloum-Ardakani, Electrochemical determination of diazepam in real samples based on fullerene-functionalized carbon nanotubes/ionic liquid nanocomposite. Sens. Actuators B Chem. 240, 125–131 (2017)

    CAS  Google Scholar 

  46. A. Radi, Determination of levofloxacin in human urine by adsorptive square-wave anodic strip** voltammetry on a glassy carbon electrode. Talanta 58, 319–324 (2002)

    CAS  PubMed  Google Scholar 

  47. Y. Chi, J. Li, Determination of levofloxacin hydrochloride with multiwalled carbon nanotubes-polymeric alizarin film modified electrode. Russ. J. Electrochem. 46, 155–160 (2010)

    CAS  Google Scholar 

  48. M.H. Ghanbari, A. Khoshroo, H. Sobati, M.R. Ganjali, M. Rahimi-Nasrabadi, F. Ahmadi, An electrochemical sensor based on poly (l-Cysteine)@AuNPs @ reduced graphene oxide nanocomposite for determination of levofloxacin. Microchem. J. 147, 198–206 (2019)

    CAS  Google Scholar 

  49. M.H. Ghanbari, M. Rahimi, H. Nasrabadi, H. Sobati, Modifying a glassy carbon electrode with reduced graphene oxide for the determination of levofloxacin with a glassy. Anal. Bioanal. Chem. 11, 189–200 (2019)

    CAS  Google Scholar 

  50. S. Ng, Fabrication of nano/micro-structures of cuprous oxide by electrodeposition. The University of Hong Kong Libraries (2014)

  51. S. Gu, S. Wunder, Y. Lu, M. Ballauff, R. Fenger, K. Rademann, B. Jaquet, A. Zaccone, Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles. J. Phys. Chem. C 118, 18618–18625 (2014)

    CAS  Google Scholar 

  52. M. Deo, S. Mujawar, O. Game, A. Yengantiwar, A. Banpurkar, S. Kulkarni, J. Jog, S. Ogale, Strong photo-response in a flip-chip nanowire p-Cu2O/n-ZnO junction. Nanoscale 3, 4706 (2011)

    CAS  PubMed  Google Scholar 

  53. Z. Zheng, B. Huang, Z. Wang, M. Guo, X. Qin, X. Zhang, Y. Dai, Crystal faces of Cu2O and their stabilities in photocatalytic reactions. J. Phys. Chem. C 113, 14448–14453 (2009)

    CAS  Google Scholar 

  54. P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, Y. Liu, In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 3, 3357 (2011)

    CAS  PubMed  Google Scholar 

  55. S. Zhang, H. Gao, J. Li, Y. Huang, A. Alsaedi, T. Hayat, X. Wang, Rice husks as a sustainable silica source for hierarchical flower-like metal silicate architectures assembled into ultrathin nanosheets for adsorption and catalysis. J. Hazard. Mater. 321, 92–102 (2017)

    CAS  PubMed  Google Scholar 

  56. T. Lin, J. Wang, L. Guo, F. Fu, Fe3O4@MoS2 core–shell composites: preparation, characterization, and catalytic application. J. Phys. Chem. C 119, 13658–13664 (2015)

    CAS  Google Scholar 

  57. A.J. Medford, A. Vojvodic, J.S. Hummelshøj, J. Voss, F. Abild-Pedersen, F. Studt, T. Bligaard, A. Nilsson, J.K. Nørskov, From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015)

    CAS  Google Scholar 

  58. A.K. Sasmal, S. Dutta, T. Pal, A ternary Cu2O–Cu–CuO nanocomposite: a catalyst with intriguing activity. Dalton Trans. 45, 3139–3150 (2016)

    CAS  PubMed  Google Scholar 

  59. D. Choi, D.-J. Jang, Facile fabrication of CuO/Cu2O composites with high catalytic performances. New J. Chem. 41, 2964–2972 (2017)

    CAS  Google Scholar 

  60. J. Pal, C. Mondal, A.K. Sasmal, M. Ganguly, Y. Negishi, T. Pal, Account of nitroarene reduction with size- and facet-controlled CuO–MnO2 nanocomposites. ACS Appl. Mater. Interfaces 6, 9173–9184 (2014)

    CAS  PubMed  Google Scholar 

  61. F. Wang, L. Zhu, J. Zhang, Electrochemical sensor for levofloxacin based on molecularly imprinted polypyrrole–graphene–gold nanoparticles modified electrode. Sens. Actuators B 192, 642–647 (2014)

    CAS  Google Scholar 

  62. W. Wen, D.-M. Zhao, X.-H. Zhang, H.-Y. **ong, S.-F. Wang, W. Chen, Y.-D. Zhao, One-step fabrication of poly(o-aminophenol)/multi-walled carbon nanotubes composite film modified electrode and its application for levofloxacin determination in pharmaceuticals. Sens. Actuators B 174, 202–220 (2012)

    CAS  Google Scholar 

  63. R. Jelić, M. Tomović, S. Stojanović, L. Joksović, I. Jakovljević, P. Djurdjević, Study of inclusion complex of β-cyclodextrin and levofloxacin and its effect on the solution equilibria between gadolinium(III) ion and levofloxacin. Monatsh. Chem. 146, 1621–1630 (2015)

    Google Scholar 

  64. L. Tang, Y. Tong, R. Zheng, W. Liu, Y. Gu, C. Li, R. Chen, Z. Zhang, Ag nanoparticles and electrospun CeO2-Au composite nanofibers modified glassy carbon electrode for determination of levofloxacin. Sens. Actuators B 203, 95–101 (2014)

    CAS  Google Scholar 

  65. J.-Y. Huang, T. Bao, T.-X. Hu, W. Wen, X.-H. Zhang, S.-F. Wang, Voltammetric determination of levofloxacin using a glassy carbon electrode modified with poly(o-aminophenol) and graphene quantum dots. Microchim. Acta 184, 127–135 (2016)

    Google Scholar 

  66. L. Han, Y. Zhao, C. Chang, F. Li, A novel electrochemical sensor based on poly(p-aminobenzene sulfonic acid)-reduced graphene oxide composite film for the sensitive and selective detection of levofloxacin in human urine. J. Electroanal. Chem. 817, 141–148 (2018)

    CAS  Google Scholar 

  67. V. Cesarino, I. Cesarino, F.C. Moraes, S.A.S. Machado, L.H. Mascaro, Carbon nanotubes modified with SnO2 rods for levofloxacin detection. J. Braz. Chem. Soc. 25, 389–392 (2014)

    Google Scholar 

Download references

Acknowledgement

JMG gratefully acknowledges University Grants Commission (UGC), for the award of research fellowship, and Department of Science and Technology (DST), Government of India for instrumentation facilities by DST-PURSE Phase II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beena Mathew.

Ethics declarations

Conflict of interest

We have no conflict of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2435 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, J.M., Mathew, B. Green-synthesized Cu2O nanoaggregates incorporated on β-cyclodextrin for catalytic reduction and electrochemical sensing. J IRAN CHEM SOC 17, 2613–2626 (2020). https://doi.org/10.1007/s13738-020-01954-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-01954-7

Keywords

Navigation