Log in

Investigating the impact of epoxy Borassus flabellifer fiber-based composites for UAV landing gear

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

This study assesses the impact of raw and alkali-treated Borassus Flabellifer (BF) fibers in an epoxy composite. It examines mechanical properties such as tensile strength, elongation, and impact resistance to gauge load-bearing capacity and resilience to sudden forces in “unmanned aerial vehicle” (UAV) landing gear. Attenuated total reflectance for Fourier transform infrared (ATR-FTIR) were taken to confirm the composition of fiber before and after alkali treatment. Scanning electron microscope (SEM) analysis probes the composite microstructure, shedding light on fiber-matrix interaction and overall morphology. Energy dispersive X-ray analysis (EDX) offers insights into elemental composition, aiding comprehension of element distribution and fiber-epoxy matrix interplay. Thermogravimetric analysis (TGA) showed the thermal stability of the prepared epoxy composites. Water absorption properties are evaluated to gauge resistance to moisture, vital for durability in humid or wet conditions. These findings provide vital data on mechanical properties, SEM microstructure, EDX elemental composition, and water absorption for UAV landing gear applications. The comprehensive investigation of deformation results indicated that Borassus Flabellifer (BF) composite performed exceptionally well for UAV landing gear applications, surpassing banana/epoxy, sisel/epoxy, and coir/epoxy composites. With a landing gear deformation of 1.50 mm under 100 N load, these outcomes underscore the potential for enhancing sustainability in UAV designs. The findings of this study can pave the way for the development of more environmentally friendly and sustainable UAVs to address the critical needs of the rapidly growing UAV industry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Supplementary data and material related to this manuscript will be made available on request.

References

  1. Ramesh PS, Muruga Lal JJV (2022) Hoverperformance analysis of coaxial mini unmanned aerial vehicle for applications in mountain terrain. Aviation 26:112–123

    Article  Google Scholar 

  2. Ps R, Jeyan ML (2020) Mini unmanned aerial systems (UAV) a review of the parameters for classification of a mini UAV. Int J Aviat Aeronaut Aerosp 7:1–21

    Google Scholar 

  3. Jaud M, Le Dantec N, Ammann J, Grandjean P, Constantin D, Akhtman Y, Barbieux K, Allemand P, Delacourt C, Mermionod B (2018) Direct georeferencing of a pushbroom, lightweight hyperspectral system for mini-UAV applications. Remote Sens 10:204

    Article  Google Scholar 

  4. **ang TZ, **a GS, Zhang L (2019) Mini-UAV-based remote sensing: Techniques, applications and prospectives. IEEE Geoscience Remote Sens Mag. https://doi.org/10.1109/MGRS.2019.2918840

    Article  Google Scholar 

  5. Lee HG, Hwang HY, Lee DG (2006) Effect of wear debris on the tribological characteristics of carbon fiber epoxy composites. Wear 261:453–459

    Article  CAS  Google Scholar 

  6. Lancea C, Chicos LA, Zaharia SM, Pop MA, Pascariu IS, Buican GR, Stamate VM (2022) Simulation, fabrication and testing of UAV composite landing gear. Appl Sci 12:8598

    Article  CAS  Google Scholar 

  7. Shahrul Hairi SMF, Saleh SJMBM, Hamdan A, Bin Omar Z (2023) Development of composite aerostructure for UAV application. green hybrid composite in engineering and non-engineering applications. Adv Mater Sci Eng. https://doi.org/10.1007/978-981-19-3307-3_34

    Article  Google Scholar 

  8. Sundarapandian G, Arunachalam K (2020) Investigating suitability of natural fibre-based composite as an alternative to asbestos clutch facing material in dry friction clutch of automobiles. IOP Conf Ser Mater Sci Eng 912:052017

    Article  CAS  Google Scholar 

  9. Paluvai NR, Mohanty S, Nayak SK (2014) Synthesis and modifications of epoxy resins and their composites: a review. Polym Plast Technol Eng 53:1723–1758

    Article  CAS  Google Scholar 

  10. Karthika M, Shaji N, Johnson A, Santhosh NM, Gopakumar DA, Thomas S (2019) Biodegradation of green polymeric composites materials. Bio Monom Green Polym Compos Mater 7:141–159

    Google Scholar 

  11. Kwon DJ, Shin PS, Kim JH, Baek YM, Park HS, DeVries KL, Park JM (2017) Interfacial properties and thermal aging of glass fiber/epoxy composites reinforced with SiC and SiO2 nanoparticles. Compos Part B Eng 130:46–53

    Article  CAS  Google Scholar 

  12. Jo MJ, Choi H, Kim GH, Yu WR, Park M, Kim Y, Park JK, Youk JH (2018) Preparation of epoxy shape memory polymers for deployable space structures using flexible diamines. Fiber Polym 19:1799–1805

    Article  CAS  Google Scholar 

  13. Jaiswal A, Murthy H (2019) A case study of medium sized metal-composite hybrid structure UAV-design and fabrication. In: AIAA SciTech Forum. https://doi.org/10.2514/6.2019-2093

  14. Yallappa D, Veerangouda M, Maski D, Palled V, Bheemanna M (2017) Development and evaluation of drone mounted sprayer for pesticide applications to crops. IEEE Global Humanitarian Technol Conf (GHTC) 2017:1–7

    Google Scholar 

  15. Velmurugan R, Manikandan V (2007) Mechanical properties of palmyra/glass fiber hybrid composites. Compos Part A Appl Sci Manuf 38:2216–2226

    Article  Google Scholar 

  16. Obi Reddy K, Shukla M, Uma Maheswari C, Varada Rajulu A (2015) Effect of chemical treatment and fiber loading on mechanical properties of Borassus (toddy palm) fiber/epoxy composites. Int J Polym Anal Charact 20:612–626

    Article  Google Scholar 

  17. Obi Reddy K, Uma Maheswari C, Shukla M, Song JI, Varada Rajulu A (2012) Evaluation of mechanical behavior of chemically modified Borassus fruit short fiber/unsaturated polyester composites. J Compos Mater 46:2987–2998

    Article  Google Scholar 

  18. Dragus L, Ciobanu I, Mazăre C, Alexei A, Barbaresso M, Stanciu F (2019) Design a composite materials landing gear. J Phys Conf Ser 1297:012008

    Article  CAS  Google Scholar 

  19. Obi Reddy K, Uma Maheswari C, Shukla M, Song JI, Varada Rajulu A (2013) Tensile and structural characterization of alkali treated Borassus fruit fine fibers. Compos Part B Eng 44:433–438

    Article  CAS  Google Scholar 

  20. Obi Reddy K, Guduri BR, Rajulu AV (2009) Structural characterization and tensile properties of Borassus fruit fibers. J Appl Polym Sci 114:603–611

    Article  Google Scholar 

  21. Saravanan D, Pallavi N, Balaji R, Parthiban R (2008) Investigations into structural aspects of Borassus flabellifer L (palmyrah palm) fruit fibres. J Text Inst 99:133–140

    Article  CAS  Google Scholar 

  22. Sun L, Sun BH, Sun Q, Huang W (2014) Miniaturized annular ring slot antenna for small/mini UAV applications. Prog Electromagn Res C 54:1–7

    Article  Google Scholar 

  23. Sankar I, Siva I (2023) The synergy of fiber surface treatment and nanoclay on the static mechanical and tribological behaviors of palmyra fruit fiber/montmorillonite nanoclay reinforced polyester hybrid composites. Proc Inst Mech Eng Part L J Mater Des Appl 237:122–130

    CAS  Google Scholar 

  24. Bhaskar VV, Srinivas K, Rao DSB (2020) Investigation on physical and mechanical properties of banana and Palmyra fiber reinforced epoxy composites. Stroj Cas 70:167–180

    Google Scholar 

  25. Boopathi L, Sampath PS, Mylsamy K (2012) Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Compos Part B Eng 43:3044–3052

    Article  CAS  Google Scholar 

  26. Agarwal KK, Agarwal G (2019) A study of mechanical properties of epoxy resin in presence of different hardeners. Technol Innov Mech Eng

  27. Pereira AAC, D’Almeida JRM (2016) Effect of the hardener to epoxy monomer ratio on the water absorption behavior of the DGEBA/TETA epoxy system. Polimeros 26:30–37

    Article  CAS  Google Scholar 

  28. Jilani W, Mzabi N, Fourati N, Zerrouki C, Gallot-Lavallée O, Zerrouki R, Guermazi H (2015) Effects of curing agent on conductivity, structural and dielectric properties of an epoxy polymer. Polymer 79:73–81

    Article  CAS  Google Scholar 

  29. Delannoy R, Tognetti V, Richaud E (2022) Experimental and theoretical insights on the thermal oxidation of epoxy-amine networks. Polym Degrad Stab 206:110188

    Article  CAS  Google Scholar 

  30. Gavrielides A, Duguet T, Aufray M, Lacaze-Dufaure C (2019) Model of the DGEBA-EDA epoxy polymer: ezxperiments and simulation using classical molecular dynamics. Int J Polym Sci 2019:9604714

    Article  Google Scholar 

  31. Suma Sindhu P, Mitra N, Dipa Ghindani SSP (2021) Epoxy resin (DGEBA/TETA) exposed to water: a spectroscopic investigation to determine water-epoxy interactions. J Infrared Millimeter Terahertz Waves 42:558–571

    Article  Google Scholar 

  32. Singh JK, Rout AK, Kumari K (2021) A review on Borassus flabellifer lignocellulose fiber reinforced polymer composites. Carbohydr Polym 262:117929

    Article  CAS  PubMed  Google Scholar 

  33. Kumar S, Krishnan S, Mohanty S, Nayak SK (2018) Synthesis and characterization of petroleum and biobased epoxy resins: a review. Polym Int 67:815–839

    Article  CAS  Google Scholar 

  34. Vardhan Patel R, Yadav A, Winczek J (2023) Physical, mechanical, and thermal properties of natural fiber-reinforced epoxy composites for construction and automotive applications. Appl Sci (Switzerland) 11:5126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamilselvan Ganesan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesan, T., Jayarajan, N. & Ramachandran, D. Investigating the impact of epoxy Borassus flabellifer fiber-based composites for UAV landing gear. Iran Polym J (2024). https://doi.org/10.1007/s13726-024-01323-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13726-024-01323-8

Keywords

Navigation