Log in

Reactive extrusion foaming of poly(lactic acid): tailoring foam properties through controlling in-process chemical reactions

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

A continuous extrusion foaming process was performed on poly(lactic acid) (PLA) in the presence of different chemical foaming agents (CFAs) and a chain extender additive using different extruder barrel and die temperature profiles. Chemical reactions, which are involved in the extrusion foaming process of PLA, are intensely investigated to control the reactive extrusion process and tailor the foam final properties. A set of experiments was designed using the response surface methodology to evaluate the effects of material and processing parameters and optimize the PLA foam property. The results showed that the maximum void fraction, i.e. 0.55, was obtained by exothermic CFA at higher extruder temperatures. In contrast to the exothermic CFA, the addition of endothermic CFAs did not result in lightweight biodegradable foams. The void fractions of these extruded foams were less than 0.05. The presence of water molecules as a by-product of the decomposition reaction and also relatively lower decomposition temperatures of the endothermic CFAs have been considered as the main reasons. Among the variables studied, the CFA type had the strongest impact on the foam properties. In the second step, the barrel and die temperatures were adjusted accordingly.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Singhvi M, Zinjarde S, Gokhal D (2019) Polylactic acid: synthesis and biomedical applications. Microbiol 127:1612–1626

    CAS  Google Scholar 

  2. Zhou L, Ke K, Yang MB, Yang W (2021) Recent progress on chemical modification of cellulose for high mechanical-performance Poly (lactic acid)/Cellulose composite: a review. Compos Commun 23:100548

    Article  Google Scholar 

  3. Sarikhani K, Nasseri R, Lotocki V, Thompson R, Park C, Chen P (2016) Effect of well-dispersed surface-modified silica nanoparticles on crystallization behavior of poly (lactic acid) under compressed carbon dioxide. Polymer 98:100–109

    Article  CAS  Google Scholar 

  4. Lee S, Kimoto M, Tanaka M, Tsuji H, Nishino T (2018) Crystal modulus of poly (lactic acid) s, and their stereocomplex. Polymer 138:124–131

    Article  CAS  Google Scholar 

  5. Ramlee NA, Tominaga Y (2019) Mechanical and degradation properties in alkaline solution of poly (ethylene carbonate)/poly (lactic acid) blends. Polymer 166:44–49

    Article  CAS  Google Scholar 

  6. Nofar M (2016) Effects of nano-/micro-sized additives and the corresponding induced crystallinity on the extrusion foaming behavior of PLA using supercritical CO2. Mater Des 101:24–34

    Article  CAS  Google Scholar 

  7. Sombatsompop N, Srimalanon P, Markpin T, Prapagdee B (2021) Polylactic acid (PLA): improve it, use it, and dump it faster. Bioresour 16:2196–2199

    Article  CAS  Google Scholar 

  8. Kakroodi AR, Kazemi Y, Ding W, Ameli A, Park CB (2015) Poly (lactic acid)-based in situ microfibrillar composites with enhanced crystallization kinetics, mechanical properties, rheological behavior, and foaming ability. Biomacromol 16:3925–3935

    Article  CAS  Google Scholar 

  9. Wang J, Chai J, Wang G, Zhao J, Zhang D, Li B, Zhao H, Zhao G (2019) Strong and thermally insulating polylactic acid/glass fiber composite foam fabricated by supercritical carbon dioxide foaming. Int J Biol Macromol 138:144–155

    Article  CAS  PubMed  Google Scholar 

  10. Castro-Aguirre E, Iniguez-Franco F, Samsudin H, Fang X, Auras R (2016) Poly (lactic acid): mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev 107:333–366

    Article  CAS  PubMed  Google Scholar 

  11. Litauszki K, Gere D, Czigany T, Kmetty Á (2023) Environmentally friendly packaging foams: investigation of the compostability of poly (lactic acid)-based syntactic foams. SM&T 35:e00527

    CAS  Google Scholar 

  12. Kuang T, Chen F, Chang L, Zhao Y, Fu D, Gong X, Peng X (2017) Facile preparation of open-cellular porous poly (l-lactic acid) scaffold by supercritical carbon dioxide foaming for potential tissue engineering applications. Chem Eng J 307:1017–1025

    Article  CAS  Google Scholar 

  13. Nur Adilah AH, Ahmad S, Chen RS, Zailan F, Shahdan D (2019) Effect of processing temperature and foaming agent loading on properties of polylactic acid/kenaf fiber composite foam. Mater Today Proc 7:601–606

    Article  Google Scholar 

  14. Litauszki K, Kmetty Á (2020) Characterization of chemically foamed poly (lactic acid). IOP Conf Ser Mater Sci Eng 903:012018

    Article  CAS  Google Scholar 

  15. Tiwary P, Najafi N, Kontopoulou M (2021) Advances in peroxide-initiated graft modification of thermoplastic biopolyesters by reactive extrusion. Can J Chem Eng 99:1870–1884

    Article  CAS  Google Scholar 

  16. Dörr D, Standau T, Murillo Castellón S, Bonten C, Altstädt V (2020) Rheology in the presence of carbon dioxide (CO2) to study the melt behavior of chemically modified polylactide (PLA). Polymers 12:1108

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ludwiczak J, Kozlowski M (2015) Foaming of polylactide in the presence of chain extender. J Polym Environ 23:137–142

    Article  CAS  Google Scholar 

  18. Julien J, Quantin JC, Bénézet JC, Bergeret A, Lacrampe M, Krawczak P (2015) Chemical foaming extrusion of poly (lactic acid) with chain-extenders: Physical and morphological characterizations. Eur Polym J 67:40–49

    Article  CAS  Google Scholar 

  19. Su Y, Huang P, Sun J, Chen J, Zheng H, Luo H, Chong Y, Zhao Y, Wu F, Zheng W (2023) Extruded polylactide bead foams using anhydrous supercritical CO2 extrusion foaming. J Appl Polym Sci 140:e54557

    Article  CAS  Google Scholar 

  20. Wu H, Zhao G, Wang J, Wang G, Zhang W (2019) Effects of process parameters on core-back foam injection molding process. Express Polym Lett 13:390–405

    Article  Google Scholar 

  21. Dinakaran I, Sakib-Uz-Zaman C, Rahman A, Khondoker MAH (2023) Controlling degree of foaming in extrusion 3D printing of porous polylactic acid. Rapid Prototyp J 29:1958–1968

    Article  Google Scholar 

  22. Kmetty Á, Litauszki K, Réti D (2018) Characterization of different chemical blowing agents and their applicability to produce poly (lactic acid) foams by extrusion. Appl Sci 8:1960

    Article  Google Scholar 

  23. Ataeefard M, Saeb MR (2015) A multiple process optimization strategy for manufacturing environmentally friendly printing toners. J Clean Prod 108:121–130

    Article  Google Scholar 

  24. Ataeefard M, Sadati Tilebon SM, Reza Saeb M (2019) Intelligent modeling and optimization of emulsion aggregation method for producing green printing ink. Green Process Synth 8:703–718

    Article  CAS  Google Scholar 

  25. Zimmermann MV, da Silva MP, Zattera AJ, Santana RM (2018) Poly (lactic acid) foams reinforced with cellulose micro and nanofibers and foamed by chemical blowing agents. J Cell Plast 54:577–596

    Article  CAS  Google Scholar 

  26. Chen CQ, Ke DM, Zheng TT, He GJ, Cao XW, Liao X (2016) An ultraviolet-induced reactive extrusion to control chain scission and long-chain branching reactions of polylactide. Ind Eng Chem Res 55:597–605

    Article  CAS  Google Scholar 

  27. Dealy JM, Wang J (2013) Melt rheology and its applications in the plastics industry. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  28. Reyes-Labarta J, Olaya M, Marcilla A (2006) DSC study of transitions involved in thermal treatment of foamable mixtures of PE and EVA copolymer with azodicarbonamide. Polym Sci 102:2015–2025

    CAS  Google Scholar 

  29. Chauhan S (2021) Effect of maleic anhydride grafted polylactic acid concentration on mechanical and thermal properties of thermoplasticized starch filled polylactic acid blends. Polym Polym Compos 29:S400–S410

    CAS  Google Scholar 

  30. Petchwattana N, Covavisaruch S (2011) Influences of particle sizes and contents of chemical blowing agents on foaming wood plastic composites prepared from poly (vinyl chloride) and rice hull. Mater Des 32:2844–2850

    Article  CAS  Google Scholar 

  31. Lopez-Gonzalez E, Salmazo LO, Lopez-Gil A, Rodriguez-Perez MA (2019) Study of the effect of different electron irradiation doses on the decomposition temperature of azodicarbonamide. Polym Eng Sci 59:791–798

    Article  CAS  Google Scholar 

  32. Bhiogade A, Kannan M, Devanathan S (2020) Degradation kinetics study of poly lactic acid (PLA) based biodegradable green composites. Mater Today Proc 24:806–814

    Article  CAS  Google Scholar 

  33. Matuana L, Faruk O, Diaz C (2009) Cell morphology of extrusion foamed poly (lactic acid) using endothermic chemical foaming agent. Bioresour Technol 100:5947–5954

    Article  CAS  PubMed  Google Scholar 

  34. Zoski CG (2006) Handbook of electrochemistry. Elsevier, Amsterdam

    Google Scholar 

  35. Chen C, Ke D, Zheng T, He G, Cao X, Liao X (2021) Performance, interfacial compatibility testing and rheonaut technology analysis for simultaneous rheology and FTIR of poly (lactic acid)/modified saponite nanocomposites. Polym Test 100:107232

    Article  CAS  Google Scholar 

  36. Herrera-Kao W, Loría-Bastarrachea M, Pérez-Padilla Y, Cauich-Rodríguez J, Vázquez-Torres H, Cervantes-Uc JM (2018) Thermal degradation of poly (caprolactone), poly (lactic acid), and poly (hydroxybutyrate) studied by TGA/FTIR and other analytical techniques. Polym Bull 75:4191–4205

    Article  CAS  Google Scholar 

  37. Corre YM, Duchet J, Reignier J, Maazouz A (2011) Melt strengthening of poly (lactic acid) through reactive extrusion with epoxy-functionalized chains. Rheol Acta 50:613–629

    Article  CAS  Google Scholar 

  38. Armentano I, Elena F, Nuria B, Franco D, Francesca L, Stefano F, Alfonso J, Kicheol Y, Jisoo A, Sangmi K, María KJ (2015) Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polym Lett 9:583–596

    Article  CAS  Google Scholar 

  39. Kooti M, Naghdi Sedeh A (2013) Microwave-assisted combustion synthesis of ZnO nanoparticles. J Chem 2013:562028

    Article  Google Scholar 

  40. Shailesh J, Kalyanasundaram S, Balasubramanian V (2013) Quantitative analysis of sodium carbonate and sodium bicarbonate in solid mixtures using Fourier transform infrared spectroscopy (FTIR). Appl Spectrosc 67:841–845

    Article  Google Scholar 

  41. Pichitchai P, Sumang R, Choopun S (2018) Effect of concentration of citric acid on size and optical properties of fluorescence graphene quantum dots prepared by tuning carbonization degree. Chiang Mai J Sci 45:2005

    Google Scholar 

  42. Sun Q, Mekonnen T, Misra M, Mohanty AK (2016) Novel biodegradable cast film from carbon dioxide based copolymer and poly (lactic acid). Polym Environ 24:23–36

    Article  CAS  Google Scholar 

  43. Li Y, Mi J, Fu H, Zhou H, Wang X (2019) Nanocellular foaming behaviors of chain-extended poly (lactic acid) induced by isothermal crystallization. ACS Omega 4:12512–12523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Hatami or Farkhondeh Hemmati.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 599 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valipour, M., Rahmanifard, M., Jaberi, N. et al. Reactive extrusion foaming of poly(lactic acid): tailoring foam properties through controlling in-process chemical reactions. Iran Polym J 33, 1031–1046 (2024). https://doi.org/10.1007/s13726-024-01304-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-024-01304-x

Keywords

Navigation