Log in

Production of environmentally benign poly(hydroxybutyrate)/silver bionanocomposites reinforced with ZnO for active packaging of bread

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The aim of the present work was to prepare poly(hydroxybutyrate) (PHB)-based active food packaging film with antimicrobial potential. For the sake of develo** such film, PHB silver nanocomposites (PHB/Ag) were synthesized biologically using rice-washed water as substrate for Cupriavidus necator. These nanocomposites were further incorporated with varying concentrations of zinc oxide (ZnO) nanoparticles (1, 2, 3 and 4%), and thin films were obtained by solvent casting. Their morphological, thermal, mechanical, water barrier and antimicrobial properties were examined by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), tensile testing, water vapor permeability (WVP), and agar well diffusion assay, respectively. After the overall analysis, PHB/Ag-ZnO at 3% was designated as the optimized film. This film showed remarkable antimicrobial potential against tested food-borne pathogens i.e., Escherichia coli (E. coli, Gram-negative bacterium), Staphylococcus aureus (S. aureus, Gram-positive bacterium), and Aspergillus niger (A. niger, fungal strain). With this context, the above-selected film was used to check the shelf-life of a bread sample for 10 days of storage. The findings of the study evidenced that PHB/Ag-ZnO 3% extended the shelf-life of packaged bread up to 5–8 days. Thus, the present research work demonstrates that our prepared film has prolonged the shelf-life of packaged food and carries significant potential for active food packaging.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wu Z, Wu J, Peng T, Li Y, Lin D, **ng B, Li C, Yang Y, Yang L, Zhang L, Ma R (2017) Preparation and application of starch/polyvinyl alcohol/citric acid ternary blend antimicrobial functional food packaging films. Polymers 9:102

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yildirim S, Röcker B, Pettersen MK, Nilsen-Nygaard J, Ayhan Z, Rutkaite R, Radusin T, Suminska P, Marcos B, Coma V (2018) Active packaging applications for food. Comprehen Rev Food Sci Food Safety 17:165–199

    Article  Google Scholar 

  3. Ncube LK, Ude AU, Ogunmuyiwa EN, Zulkifi R, Beas IN (2020) Environmental impact of food packaging materials: a review of contemporary development from conventional plastics to polylactic acid based materials. Materials 13:4994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bai H, Huang C, **u H, Zhang Q, Deng H, Wang K, Chen F, Fu Q (2014) Significantly improving oxygen barrier properties of polylactide via constructing parallel-aligned shish-kebab-like crystals with well-interlocked boundaries. Biomacromol 15:1507–1514

    Article  CAS  Google Scholar 

  5. Pasha HY, Mohtasebi SS, Taherimehr M, Tabatabaeekoloor R, Firous MS, Javadi A (2023) New poly(lactic acid)-based nanocomposite films for food packaging applications. Iran Polym J 32:855–871

    Article  CAS  Google Scholar 

  6. Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Current Opin Microbiol 13:321–326

    Article  CAS  Google Scholar 

  7. Singh N, Hui D, Singh R, Ahuja IP, Feo L, Fraternali F (2017) Recycling of plastic solid waste: a state of art review and future applications. Compos Part B: Eng 115:409–422

    Article  CAS  Google Scholar 

  8. McAdam B, Fournet MB, McDonald P, Mojicevic M (2020) Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics. Polymers 12:2908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mekonnen T, Mussone P, Khalil H, Bressler D (2013) Progress in bio-based plastics and plasticizing modifications. J Mater Chem A 1:13379–13398

    Article  CAS  Google Scholar 

  10. Ashfaq A, Khursheed N, Fatima S, Anjum Z, Younis K (2022) Application of nanotechnology in food packaging: Pros and Cons. J Agric Food Res 7:100270

    CAS  Google Scholar 

  11. Yee YY, Gunathilake TMSU, Ching YC (2023) PLA-based composite film reinforced with empty fruit bunch fiber and silica for food packaging applications. Iran Polym J 32:1367–1376

    Article  CAS  Google Scholar 

  12. Padmanaban VC, GiriNandagopal MS, MadhangiPriyadharshini G, Maheswari N, Janani Sree G, Selvaraju N (2016) Advanced approach for degradation of recalcitrant by nanophotocatalysis using nanocomposites and their future perspectives. Int J Environ Sci Technol 13:1591–1606

    Article  CAS  Google Scholar 

  13. Saravanan M, Vemu AK, Barik SK (2011) Rapid biosynthesis of silver nanoparticles from bacillus megaterium (ncim 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloid Surf B: Biointerf 88:325–331

    Article  CAS  Google Scholar 

  14. Dahikar SB, Bhutada SA (2013) Biosynthesis of silver nanoparticles using bacillus megaterium and their antibacterial potential. IJADD 3:13–19

    Google Scholar 

  15. Pomogailo AD, Dzhardimalieva GI (2014) Nanostructured material prepration via condensation ways. Springer, Rotterdam

  16. Castro-Mayorga JL, Freitas F, Reis MAM, Prieto MA, Lagaron JM (2018) Biosynthesis of silver nanoparticles and polyhydroxybutyrate nanocomposites of interest in antimicrobial applications. Int J Biolog Macromol 108:426–435

    Article  CAS  Google Scholar 

  17. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed: Nanotechnol. Biolog, Med 6:257–262

    CAS  Google Scholar 

  18. Sarwar MS, Niazi MBK, Jahan Z, Ahmad T, Hussain A (2018) Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydr Polym 184:453–464

    Article  CAS  PubMed  Google Scholar 

  19. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SK, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242

    Article  CAS  Google Scholar 

  20. Hezma AM, Rajeh A, Mannaa MA (2019) An insight into the effect of zinc oxide nanoparticles on the structural, thermal, mechanical properties and antimicrobial activity of Cs/PVA composite. Colloid Surf A: Physicochem Eng Asp 581:123821

    Article  CAS  Google Scholar 

  21. Li JH, Hong RY, Li MY, Li HZ, Zheng Y, Ding J (2009) Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Prog Org Coat 64:504–509

    Article  CAS  Google Scholar 

  22. Amini E, Valls C, Roncero MB (2023) Promising nanocomposites for food packaging based on cellulose – PCL films reinforced by using ZnO nanoparticles in an ionic liquid. Indust Crop Prod 193:116246

    Article  CAS  Google Scholar 

  23. Gibril ME, Ahmed KK, Lekha P, Sithole B, Khosla A, Furukawa H (2022) Effect of nanocrystalline cellulose and zinc oxide hybrid organic–inorganic nanofiller on the physical properties of polycaprolactone nanocomposite films. Microsyst Technol 28:143–152

    Article  Google Scholar 

  24. Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Method 54:177–182

    Article  CAS  Google Scholar 

  25. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater Res 12:1–39

    Article  CAS  Google Scholar 

  26. Das S, Majumder A, Shukla V, Suhazsini P, Radha P (2018) Biosynthesis of poly(3-hydroxybutyrate) from cheese whey by Bacillus megaterium NCIM 5472. J Polym Environ 26:4176–4187

    Article  CAS  Google Scholar 

  27. Jayakumar A, Prabhu K, Shah L, Radha P (2020) Biologically and environmentally benign approach for PHB-silver nanocomposite synthesis and its characterization. Polym Test 81:106197

    Article  CAS  Google Scholar 

  28. Xu A, Lao Y, Zhang Q, Li J, **a J (2010) Extraction and characterization of PHB from Acidiphilium cryptum DX1-1. J Wuhan Univ Technol, Mater Sci Ed 25:938–943

    Article  CAS  Google Scholar 

  29. Santhanam A, Sasidharan S (2010) Microbial production of polyhydroxy alkanotes (PHA) from Alcaligens spp. and Pseudomonas oleovorans using different carbon sources. African J Biotechnol 9:3144–3150

    CAS  Google Scholar 

  30. Martelli SM, Sabirova J, Fakhoury FM, Dyzma A, De Meyer B, Soetaert W (2012) Obtention and characterization of poly(3-hydroxybutyricacid-co-hydroxyvaleric acid)/mcl-PHA based blends. LWT47:386–392

  31. McCullough EA, Kwon M, Shim H (2003) A comparison of standard methods for measuring water vapour premeability of fabrics. Measur Sci Technol 14:1402–1408

    Article  CAS  Google Scholar 

  32. Abdul Amer Z, Qasim Saeed A (2015) Soil burial degradation of polypropylene/starch blend. Int J Tech Res Appl 3:91–96

    Google Scholar 

  33. Sharma P, Ahuja A, DilsadIzrayeel AM, Samyn P, Rastogi VK (2022) Physicochemical and thermal characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) films incorporating thyme essential oil for active packaging of white bread. Food Control 133:108688

    Article  CAS  Google Scholar 

  34. Ijah UJJ, Auta HS, Aduloju MO, Aransiola SA (2014) Microbiological, nutritional, and sensory quality of bread produced from wheat and potato flour blends. Int J Food Sci 2014:671701

    Article  PubMed  PubMed Central  Google Scholar 

  35. Patil MP, Singh RD, Koli PB, Patil KT, Jagdale BS, Tipare AR, Kim GD (2018) Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microb Pathogen 121:184–189

    Article  CAS  Google Scholar 

  36. Dawin TP, Ahmadi Z, Taromi FA (2018) Bio-based solution-cast blend films based on polylactic acid and polyhydroxybutyrate: Influence of pyromellitic dianhydride as chain extender on the morphology, dispersibility, and crystallinity. Prog Org Coat 119:23–30

    Article  CAS  Google Scholar 

  37. Vasile C, Râpă M, Ștefan M, Stan M, Macavei S, Darie-Niţă RN, Barbu-Tudoran L, Vodnar DC, Popa EE, Ştefan R, Borodi G (2017) New PLA/ZnO:Cu/Ag bionanocomposites for food packaging. Exp Polym Lett 11:531–544

    Article  CAS  Google Scholar 

  38. Mittal M, Bhuwal A, Sharma P, Aggarwal NK (2023) Utilization of pulp and paper industrial wastewater for production of polyhydroxybutyrate by Bacillus sonorensis NAM5. Syst Microbiol Biomanuf 3:805–818

    Article  CAS  Google Scholar 

  39. Ahuja S, Bains O, Mittal M, Kamal R, Aggarwal NK, Arora S (2023) Multifunctional chromone-incorporated poly(hydroxybutyrate) luminescent film for active and intelligent food packaging. Int J Biolog Macromol 246:125625

    Article  CAS  Google Scholar 

  40. Das J, Paul Das M, Velusamy P (2013) Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochim Acta Part A: Mol Biomol Spect 104:265–270

    Article  CAS  Google Scholar 

  41. Velgosova O, Mudra E, Vojtko M, Veselovsky L (2021) Embedding of green synthesized silver nanoparticles into polymer matrix. Bull Mater Sci 44:1–7

    Article  Google Scholar 

  42. Díez-Pascual AM (2022) Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with zinc oxide nanoparticles for food packaging. J Food Proc Eng 45:1–9

    Article  Google Scholar 

  43. Ibrahim MI, Alsafadi D, Alamry KA, Oves M, Alosaimi AM, Hussein MA (2022) A promising antimicrobial bionanocomposite based poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced silver doped zinc oxide nanoparticles. Sci Rep 12:14299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Amico DAD, Montes MLI, Manfredi LB, Cyras VP (2016) Fully bio-based and biodegradable polylactic acid/poly(3-hydroxybutirate) blends : Use of a common plasticizer as performance improvement strategy. Polym Test 49:22–28

    Article  Google Scholar 

  45. Sánchez Zeferino R, Barboza Flores M, Pal U (2011) Photoluminescence and raman scattering in ag-doped zno nanoparticles. J Appl Phys 109:014308

    Article  Google Scholar 

  46. Yeo SY, Tan WL, Abu Bakar M, Ismail J (2010) Silver sulfide/poly(3-hydroxybutyrate) nanocomposites: Thermal stability and kinetic analysis of thermal degradation. Polym Degrad Stabil 95:1299–1304

    Article  CAS  Google Scholar 

  47. Shuai C, Wang C, Qi F, Peng S, Yang W, He C, Wang G, Qian G (2020) Enhanced crystallinity and antibacterial of PHBV scaffolds incorporated with zinc oxide. J Nanomater 2020:6014816

    Article  Google Scholar 

  48. Mittal M, Ahuja S, Yadav A, Aggarwal NK (2023) Development of poly(hydroxybutyrate) film incorporated with nano silica and clove essential oil intended for active packaging of brown bread. Int J Biolog Macromol 233:123512

    Article  CAS  Google Scholar 

  49. Khan MR, Fadlallah S, Gallos A, Flourat AL, Torrieri E, Allais F (2023) Effect of ferulic acid derivative concentration on the release kinetics, antioxidant capacity, and thermal behaviour of different polymeric films. Food Chem 410:135395

    Article  CAS  PubMed  Google Scholar 

  50. Yang M, **a Y, Wang Y, Zhao X, Xue Z, Quan F, Geng C, Zhao Z (2016) Preparation and property investigation of crosslinked alginate/silicon dioxide nanocomposite films. J Appl Polym Sci 133:43489

    Article  Google Scholar 

  51. Mallakpour S, Behranvand V (2014) Optical, mechanical, and thermal behavior of poly(vinyl alcohol) composite films embedded with biosafe and optically active poly(amide–imide)-ZnO quantum dot nanocomposite as a novel reinforcement. Colloid Polym Sci 292:2857–2867

    Article  CAS  Google Scholar 

  52. Zaman HU, Hun PD, Khan RA, Yoon KB (2012) Morphology, mechanical, and crystallization behaviors of micro- and nano-ZnO filled polypropylene composites. J Reinf Plast Compos 31:323–329

    Article  CAS  Google Scholar 

  53. Althubiti NA, Atta A, Abdeltwab E, Al-Harbi N, Abdel-Hamid MM (2023) Structural characterization and dielectric properties of low energy hydrogen beam irradiated PVA/ZnO nanocomposite materials. Inorg Chem Commun 153:110779

    Article  CAS  Google Scholar 

  54. Srubar WV, Wright ZC, Tsui A, Michel AT, Billington SL, Frank CW (2012) Characterizing the effects of ambient aging on the mechanical and physical properties of two commercially available bacterial thermoplastics. Polym Degrad Stabil 97:1922–1929

    Article  CAS  Google Scholar 

  55. Abbas M, Buntinx M, Deferme W, Peeters R (2019) (Bio)polymer/ZnO nanocomposites for packaging applications: A review of gas barrier and mechanical properties. Nanomaterials 2019:1494

    Article  Google Scholar 

  56. Ahmed J, Mulla M, Jacob H, Luciano G, Bini TB, Almusallam A (2019) Polylactide/poly(ε-caprolactone)/zinc oxide/clove essential oil composite antimicrobial films for scrambled egg packaging. Food Pack Shelf Life 21:100355

    Article  Google Scholar 

  57. Silva MR, Matos RS, Monteiro MDS, Santos SB, Filho HD, Andrade GR, Salerno M, Almeida LE (2022) Exploiting the physicochemical and antimicrobial properties of PHB/PEG and PHB/PEG/ALG-e blends loaded with Ag nanoparticles. Materials 15:7544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Petchwattana N, Covavisaruch S, Wibooranawong S, Naknaen P (2016) Antimicrobial food packaging prepared from poly(butylene succinate) and zinc oxide. Measurement 93:442–448

    Article  Google Scholar 

  59. Díez-Pascual AM, Díez-Vicente AL (2014) Poly(3-hydroxybutyrate)/ZnO bionanocomposites with improved mechanical, barrier and antibacterial properties. Int J Mol Sci 15:10950–10973

    Article  PubMed  PubMed Central  Google Scholar 

  60. Noshirvani N, Ghanbarzadeh B, RezaeiMokarram R, Hashemi M (2017) Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite for increasing the shelf life of bread. Food Pack Shelf Life 11:106–114

    Article  Google Scholar 

  61. Pantani R, Gorrasi G, Vigliotta G, Murariu M, Dubois P (2013) PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics. Eur Polym J 49:3471–3482

    Article  CAS  Google Scholar 

  62. Maureira J, Olate-Moya F, Bastías R, Farias S, Alvarez R, Rosales-Cuello N, Palza H (2023) Multifunctional poly(3-hydroxybutyrate) composites with MoS2 for food packaging applications. Eur Polym J 188:111914

    Article  CAS  Google Scholar 

  63. Zare M, Namratha K, Ilyas S, Hezam A, Mathur S, Byrappa K (2019) Smart Fortified PHBV-CS biopolymer with ZnO-Ag nanocomposites for enhanced shelf life of food packaging. ACS Appl Mater Interf 11:48309–48320

    Article  CAS  Google Scholar 

  64. Wang YY, Yu HY, Yang L, Abdalkarim SY, Chen WL (2019) Enhancing long-term biodegradability and UV-shielding performances of transparent polylactic acid nanocomposite films by adding cellulose nanocrystal-zinc oxide hybrids. Int J Biolog Macromol 141:893–905

    Article  CAS  Google Scholar 

  65. Emami-Karvani Z (2011) Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. African J Microbiol Res 5:1368–1373

    CAS  Google Scholar 

  66. Thanakkasaranee S, Kim D, Seo J (2018) Preparation and characterization of polypropylene/sodium propionate (PP/SP) composite films for bread packaging application. Pack Technol Sci 31:221–231

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Seed Grant Money (No. DPA-I/32/22/MRP/2358-2500) received from Kurukshetra University, Kurukshetra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj K. Aggarwal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, M., Ahuja, S., Yadav, A. et al. Production of environmentally benign poly(hydroxybutyrate)/silver bionanocomposites reinforced with ZnO for active packaging of bread. Iran Polym J 33, 787–798 (2024). https://doi.org/10.1007/s13726-024-01294-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-024-01294-w

Keywords

Navigation