Log in

Carbon nanotube/polyurethane nanocomposites with surface-modified nanostructures

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Polymeric nanocomposites are strong alternatives for filled polymers (containing fillers) or blends. Due to certain properties, such as high Young’s modulus, good tensile strength and carbonic nature, it is more economical to use nanotubes instead of metals. Although nanotubes do not interact easily with other materials, chemical modifications can still make them to interact favorably with other materials. Uniform distribution and improved adhesion of nanotubes are important issues that must be paid attention for successful synthesis of nanocomposites. The main goal of the present work is to make a uniform distribution and proper interaction between the PU matrix and CNTs. Therefore, carboxylic functional groups were created on the surface of nanotubes using acid and plasma treatment methods and the properties of resulting nanocomposites were studied. FTIR results corroborated that the micro-phase separation values increased by 7% in acid-modified and 3% in plasma-modified nanocomposites compared to its unmodified counterpart. The frequency sweep analysis proved that the surface modification of CNT promotes the non-terminal behavior and viscosity upturn at low frequencies and this effect was more noticeable in acid-treated samples compared to plasma-treated ones. The DMA analysis results confirmed that surface modification at low content of CNT decreases the Tg of a soft segment-rich phase, whereas at higher content of CNT, surface modification increases this value. Electrical conductivity measurement illustrated that the electrical percolation threshold in acid-modified nanocomposites was decreased by 35% and in plasma-modified nanocomposites by 19% compared with its untreated counterpart.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Khatoon H, Iqbal S, Irfan M, Darda A, Rawat NK (2021) A review on the production, properties and applications of non-isocyanate polyurethane: a greener perspective. Prog Org Coat 154:106124

    Article  CAS  Google Scholar 

  2. Paraskar PM, Prabhudesai MS, Hatkar VM, Kulkarni RD (2021) Vegetable oil based polyurethane coatings-A sustainable approach: a review. Prog Org Coat 156:106267

    Article  CAS  Google Scholar 

  3. Zhu X, Li Q, Wang L, Wang W, Liu S, Wang C, Xu Z, Liu L, Qian X (2021) Current advances of polyurethane/graphene composites and its prospects in synthetic leather: a review. Eur Polym J 161:110837

    Article  CAS  Google Scholar 

  4. Vakili H, Mohseni M, Makki H, Yahyaei H, Ghanbari H, Gonzalez A, Irusta L (2020) Synthesis of segmented polyurethanes containing different oligo segments: experimental and computational approach. Prog Org Coat 150:105965

    Article  CAS  Google Scholar 

  5. Sung G, Kim SK, Kim JW, Kim JH (2016) Effect of isocyanate molecular structures in fabricating flexible polyurethane foams on sound absorption behavior. Polym Test 53:156–164

    Article  CAS  Google Scholar 

  6. Sahebi Jouibari I, Haddadi-Asl V, Mirhosseini MM (2019) A novel investigation on micro-phase separation of thermoplastic polyurethanes: simulation, theoretical, and experimental approaches. Iran Polym J 28:237–250

    Article  CAS  Google Scholar 

  7. Landa M, Canales J, Fernández M, Muñoz ME, Santamaría A (2014) Effect of MWCNTs and graphene on the crystallization of polyurethane based nanocomposites, analyzed via calorimetry, rheology and AFM microscopy. Polym Test 35:101–108

    Article  CAS  Google Scholar 

  8. PourmohammadiMahunaki M, Haddadi-Asl V, Roghani Mamaqani H, Koosha M, Yazdi M (2020) Preparation of polyurethane composites reinforced with halloysite and carbon nanotubes. Polym Compos 42:450–461

    Article  CAS  Google Scholar 

  9. Delebecq E, Pascault JP, Boutevin B, Ganachaud F (2013) On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev 113:80–118

    Article  CAS  PubMed  Google Scholar 

  10. Hosseini-Sianaki T, Nazockdast H, Salehnia B, Nazockdast E (2015) Microphase separation and hard domain assembly in thermoplastic polyurethane/multiwalled carbon nanotube nanocomposites. Polym Eng Sci 51:2163–2173

    Article  CAS  Google Scholar 

  11. Sahebi Jouibari I, Kamkar M, Nazokdast H (2018) Nanoparticle effects of thermoplastic polyurethane on kinetics of microphase separation with or without preshear. Polym Compos 39:4551–4559

    Article  CAS  Google Scholar 

  12. Velankar S, Cooper SL (2000) Microphase separation and rheological properties of polyurethane melts. 2. Effect of block incompatibility on the microstructure. Macromolecules 33:382–394

    Article  CAS  Google Scholar 

  13. Guazzini T, Bronco S, Carignani E, Pizzanelli S (2019) Tunable ionization degree in cationic polyurethanes and effects on phase separation. Eur Polym J 114:298–307

    Article  CAS  Google Scholar 

  14. Li JW, Tsai HA, Lee HT, Cheng YH, Chiu CW, Suen MC (2020) Synthesis and properties of side chain fluorinated polyurethanes and evaluation of changes in microphase separation. Prog Org Coat 145:105702

    Article  CAS  Google Scholar 

  15. Javni I, Bilić O, Bilić N, Petrović ZS, Eastwood EA, Zhang F, Ilavský J (2015) Thermoplastic polyurethanes with controlled morphology based on methylenediphenyldiisocyanate/isosorbide/butanediol hard segments. Polym Int 64:1607–1616

    Article  CAS  Google Scholar 

  16. Kong Z, Tian Q, Zhang R, Yin J, Shi L, Ying WB, Hu H, Yao C, Wang K, Zhu J (2019) Reexamination of the microphase separation in MDI and PTMG based polyurethane: fast and continuous association/dissociation processes of hydrogen bonding. Polymer 185:121943

    Article  CAS  Google Scholar 

  17. Amrollahi M, Sadeghi MM, Kashcooli Y (2011) Investigation of novel polyurethane elastomeric networks based on polybutadiene-ol/polypropyleneoxide mixture and their structure-properties relationship. Mater Des 32:3933–3941

    Article  CAS  Google Scholar 

  18. Lewicki JP, Harley SJ, Loui A, Pielichowski K, Mayer BP, Janowski B, Maxwell RS (2013) The influence of polyhedral oligomeric silsequioxanes on domain microstructure in polyurethane elastomers. SILICON 5:205–212

    Article  CAS  Google Scholar 

  19. Mokeev MV, Ostanin SA, Saprykina NN, Zuev VV (2018) Microphase structure of polyurethane-polyurea copolymers as revealed by solid-state NMR: effect of molecular architecture. Polymer 150:72–83

    Article  CAS  Google Scholar 

  20. Lin J, Zhang P, Zheng C, Wu X, Mao T, Zhu M, Wang H, Feng D, Qian S, Cai X (2014) Reduced silanized graphene oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties. Appl Surf Sci 15:114–123

    Article  CAS  Google Scholar 

  21. Tajdari A, Babaei A, Goudarzi A, Partovi R (2020) Preparation and study on the optical, mechanical, and antibacterial properties of polylactic acid/ZnO/TiO2 shared nanocomposites. J Plast Film Sheet 36:285–311

    Article  CAS  Google Scholar 

  22. Arab-Bafrani Z, Zabihi E, Jafari SM, Khoshbin-Khoshnazar A, Mousavi E, Khalili M, Babaei A (2021) Enhanced radiotherapy efficacy of breast cancer multi cellular tumor spheroids through in-situ fabricated chitosan-zinc oxide bio-nanocomposites as radio-sensitizing agents. Int J Pharm 605:120828

    Article  CAS  PubMed  Google Scholar 

  23. Meyyappan M (2004) Carbon nanotubes: science and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  24. Sun WJ, Zhou CG, Jia LC, Wang YY, Zhang YP, Wang T, Yan DX, Li ZM (2020) A reliable and highly conductive carbon nanotube/thermoplastic polyurethane composite with an enhanced segregated structure for electrically driven heater applications. J Mater Chem C 8:8814–8822

    Article  CAS  Google Scholar 

  25. Shabani A, Babaei A, Reza A, Abdolrasouli MH (2019) Investigating the mechanical, morphological, and thermal behavior of PA-6/SAN/MWCNT blends: application of Taguchi experimental design. Polym Compos 40:47534762

    Article  CAS  Google Scholar 

  26. Mora A, Verma P, Kumar S (2020) Electrical conductivity of CNT/polymer composites: 3D printing, measurements and modeling. Compos Part B Eng 183:107600

    Article  CAS  Google Scholar 

  27. Huang K, Ning H, Hu N, Liu F, Wu X, Wang S, Liu Y, Zou R, Yuan W, Wu L (2020) Ultrasensitive MWCNT/PDMS composite strain sensor fabricated by laser ablation process. Compos Sci Technol 192:108105

    Article  CAS  Google Scholar 

  28. Tang XH, Li J, Wang Y, Weng YX, Wang M (2020) Controlling distribution of multi-walled carbon nanotube on surface area of poly(ε-caprolactone) to form sandwiched structure for high-efficiency electromagnetic interference shielding. Compos Part B Eng 196:108121

    Article  CAS  Google Scholar 

  29. Yue TN, Gao YN, Wang Y, Shi YD, Shen JB, Wu H, Wang M (2021) Processing temperature-dependent distribution of multiwall carbon nanotube in poly(ethylene-co-1-octene)/high density polyethylene for electrical conductivity and microwave shielding enhancement. Polym Compos 42:1396–1406

    Article  CAS  Google Scholar 

  30. Li J, Wang Y, Yue TN, Gao YN, Shi YD, Shen JB, Wu H, Wang M (2021) Robust electromagnetic interference shielding, joule heating, thermal conductivity, and anti-drip** performances of polyoxymethylene with uniform distribution and high content of carbon-based nanofillers. Compos Sci Technol 206:108681

    Article  CAS  Google Scholar 

  31. Wang M, Tang XH, Cai JH, Wu H, Shen JB, Guo SY (2021) Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review. Carbon 177:377–402

    Article  CAS  Google Scholar 

  32. Cai JH, Tang XH, Chen XD, Wang M (2021) Temperature and strain-induced tunable electromagnetic interference shielding in polydimethylsiloxane/multi-walled carbon nanotube composites with temperature-sensitive microspheres. Compos Part A 140:106188

    Article  CAS  Google Scholar 

  33. Liu X, Xu F, Zhang K, Wei B, Gao Z, Qiu Y (2017) Characterization of enhanced interfacial bonding between epoxy and plasma functionalized carbon nanotube films. Compos Sci Technol 145:114–121

    Article  CAS  Google Scholar 

  34. Lee E, Lim YK, Chun Y, Wang BY, Lim DS (2017) Characteristics of hydrogen plasma treated carbon nanotubes and their influence on the mechanical properties of polyetherimide-based nanocomposites. Carbon 118:650–658

    Article  CAS  Google Scholar 

  35. Lee J, Efremov A, Son RG, Pack SP, Lee HW, Kim K, Kwon KH (2016) Ammonia-based plasma treatment of single-walled carbon nanotube thin films for bio-immobilization. Carbon 105:430–437

    Article  CAS  Google Scholar 

  36. Park OK, Kim WY, Kim SM, You NH, Jeong Y, Lee HS, Ku BC (2015) Effect of oxygen plasma treatment on the mechanical properties of carbon nanotube fibers. Mater Lett 156:17–20

    Article  CAS  Google Scholar 

  37. Hu CT, Wu JM, Yeha JW, Shin HC (2016) Electron ballistic characteristic optimization in individual MWCNT by oxygen plasma treatment. RSC Adv 6:107977–107983

    Article  CAS  Google Scholar 

  38. Mishra P, Harsh SSI (2013) Surface modification of MWCNTs by O2 plasma treatment and its exposure time dependent analysis by SEM, TEM and vibrational spectroscopy. Superlattices Microstruct 64:399–407

    Article  CAS  Google Scholar 

  39. Gindana BR, Jamil AA, Bernard BB, Tan FL, Aishah MA, Asik JA, Idris R (2015) Chemical surface modification of CNTs via three oxidative acid treatments. Adv Mater Res 1107:320–325

    Article  Google Scholar 

  40. Farzaneh A, Rostami A, Nazockdast H (2021) Thermoplastic polyurethane/multiwalled carbon nanotubes nanocomposites: effect of nanoparticle content, shear, and thermal processing. Polym Compos 42:4804–4813

    Article  CAS  Google Scholar 

  41. Farzaneh A, Rostami A, Nazockdast H (2021) Mono-filler and bi-filler composites based on thermoplastic polyurethane, carbon fibers and carbon nanotubes with improved physicomechanical and engineering properties. Polym Int 71:232–242

    Article  CAS  Google Scholar 

  42. Mirhosseini MM, Sahebi Jouibari I, Haddadi-Asl V (2019) A simple and versatile method to tailor physicochemical properties of thermoplastic polyurethane elastomers by using novel mixed soft segments. Mater Res Express 6:065314

    Article  CAS  Google Scholar 

  43. Sahebi Jouibari I, Haddadi-Asl V, Ahmadi H, Mirhosseini MM (2019) Micro-phase separation kinetics of polyurethane nanocomposites with neural network. Polym Compos 40:3904–3913

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Haddadi-Asl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haji, M., Haddadi-Asl, V. & Jouibari, I.S. Carbon nanotube/polyurethane nanocomposites with surface-modified nanostructures. Iran Polym J 31, 1173–1182 (2022). https://doi.org/10.1007/s13726-022-01066-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01066-4

Keywords

Navigation